References

[fir, 2013] (2013). FIRST - large scale inFormation extraction and Integration infrastructure for SupporTing financial decision-making. http://project-first.eu/. [tre, 2014] (2014). TrendMiner. http://www.trendminer-project.eu/.

[Bollen et al., 2011] Bollen, J., Mao, H., and Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1):1–8.

[Cohen, 1960] Cohen, J. (1960). A coefficient of agreement for nominal scales. educational and psychosocial measurement, 20, 37-46.

[Davis et al., 2016] Davis, B., Cortis, K., Vasiliu, L., Koumpis, A., McDermott, R., and Handschuh, S. (2016). Social sentiment indices powered by x-scores. In ALLDATA 2016 : The Second International Conference on Big Data, Small Data, Linked Data and Open Data.

[Eagle Alpha, 2016] Eagle Alpha (2016). Sentiment analysis in the financial domain. does it work? https://medium. com/eagle-alpha/sentiment-analysis-in-the-financial-domain-does-it-work-36fa974ea3cb# .o793xdr9h. Accessed 23-March-2016.

[Finn, 1970] Finn, R. H. (1970). A note on estimating the reliability of categorical data. Educational and Psychological Measurement.

[Fleiss et al., 1981] Fleiss, J. L., Levin, B., and Paik, M. C. (1981). The analysis of data from matched samples. Statistical Methods for Rates and Proportions, Third Edition, pages 373–406.

[Ghosh et al., 2015] Ghosh, A., Li, G., Veale, T., Rosso, P., Shutova, E., Barnden, J., and Reyes, A. (2015). Semeval-2015 task 11: Sentiment analysis of figurative language in twitter. In Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pages 470–478.

[Goonatilake and Herath, 2007] Goonatilake, R. and Herath, S. (2007). The volatility of the stock market and news. International Research Journal of Finance and Economics, 3(11):53–65. [Liu, 2012] Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis lectures on human language technologies, 5(1):1–167.

[Loughran and McDonald, 2011] Loughran, T. and McDonald, B. (2011). "when is a liability not a liability? textual analysis, dictionaries, and 10-ks". The Journal of Finance, 66(1):35–65.

[Malo et al., 2014] Malo, P., Sinha, A., Korhonen, P., Wallenius, J., and Takala, P. (2014). Good debt or bad debt: Detecting semantic orientations in economic texts. Journal of the Association for Information Science and Technology, 65(4):782–796.

[Micu et al., 2008] Micu, A., Mast, L., Milea, V., Frasincar, F., and Kaymak, U. (2008). Financial news analysis using a semantic web approach. In Semantic Knowledge Management: an Ontology-based Framework, Paolo Ceravolo, Ernesto Damiani, Gianluca Elia, Antonio Zilli (Eds.), pages 311–328.

[Mirowski et al., 2010] Mirowski, P., Ranzato, M., and LeCun, Y. (2010). Dynamic auto-encoders for semantic indexing. In NIPS 2010 Workshop on Deep Learning, Proceedings.

[Nakov et al., 2013] Nakov, P., Kozareva, Z., Ritter, A., Rosenthal, S., Stoyanov, V., and Wilson, T. (2013). Semeval-2013 task 2: Sentiment analysis in twitter.

[Pontiki et al., 2015] Pontiki, M., Galanis, D., Papageorgiou, H., Manandhar, S., and Androutsopoulos, I. (2015). Semeval-2015 task 12: Aspect based sentiment analysis. In Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), Association for Computational Linguistics, Denver, Colorado, pages 486–495.

[Pontiki et al., 2014] Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou, H., Androutsopoulos, I., and Manandhar, S. (2014). Semeval-2014 task 4: Aspect based sentiment analysis. In Proceedings of the 8th international workshop on semantic evaluation (SemEval 2014), pages 27–35. [Robinson, 1957] Robinson, W. S. (1957). The statistical measurement of agreement. American sociological review, 22(1):17–25.

[Rosenthal et al., 2014] Rosenthal, S., Ritter, A., Nakov, P., and Stoyanov, V. (2014). Semeval-2014 task 9: Sentiment analysis in twitter. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 73–80.

[Rosenthal and Stoyanov, 2015] Rosenthal, S. and Stoyanov, V. (2015). Semeval-2015 task 10: Sentiment analysis in twitter. Proceedings of SemEval-2015.

[Sanders, 2011] Sanders, N. J. (2011). Sanders-twitter sentiment corpus. http://www.sananalytics.com/lab/twittersentiment. Accessed 30-March-2016.

[Schuster, 2003] Schuster, T. (2003). Meta-communication and market dynamics. reflexive interactions of financial markets and the mass media.

[Sinha, 2014] Sinha, N. (2014). Using big data in finance: Example of sentiment-extraction from news articles. http: //www.federalreserve.gov/econresdata/notes/feds-notes/2014/using-big-data-in-financeexample-of-sentiment-extraction-from-news-articles-20140326.html. Accessed 29-March-2016.

[Takala et al., 2014] Takala, P., Malo, P., Sinha, A., and Ahlgren, O. (2014). Gold-standard for topic-specific sentiment analysis of economic texts. In LREC, volume 2014, pages 2152–2157. Citeseer.

[Tetlock et al., 2008] Tetlock, P. C., SAAR-TSECHANSKY, M., and Macskassy, S. (2008). More than words: Quantifying language to measure firms’ fundamentals. The Journal of Finance, 63(3):1437–1467.

[Van de Kauter et al., 2015] Van de Kauter, M., Breesch, D., and Hoste, V. (2015). Fine-grained analysis of explicit and implicit sentiment in financial news articles. Expert Systems with Applications, 42:4999–5010.

[Wissler et al., 2014] Wissler, L., Almashraee, M., Díaz, D. M., and Paschke, A. (2014). The gold standard in corpus annotation. In IEEE GSC.

Contact Info

Announcements