Evaluation Measures
Structural Measures:
-
|V|: number of dinstict vertices;
-
|E|: number of dinstict edges;
-
#c.c.: number of connected components;
-
cycles: YES = the taxonomy contains cycles, NO = the taxonomy is a Directed Acyclic Graph (DAG).
-
#intermediate nodes = |V| - |L| where L is the set of leaves
Comparison against gold standard:
# vertices in common: |{vertices in common with the gold standard taxonomy}|;
vertex coverage: |{vertices in common with the gold standard taxonomy}| / |{gold standard vertices}| ;
# edges in common: |{edges in common with the gold standard taxonomy}|;
edge coverage: |{edges in common with the gold standard taxonomy}| / |{gold standard edges}| ;
ratio of novel edges: ( |{taxonomy edges}| - |{edges in common with the gold standard taxonomy}| ) / |{gold standard edges}|;
P = | {edges in common with the gold standard taxonomy} | / |{system edges}|
R = | {edges in common with the gold standard taxonomy} | / |{gold standard edges}|
F = 2(P*R)/(P+R)
Cumulative Fowlkes&Mallows Measure: cumulative measure of similarity7 .
Manual quality assessment of novel edges
correct ISA = ISA AND domain specific AND not over-generic
P = |correct ISA| / |sample|
Gold Standard
The gold standard taxonomies (.taxo) are tab-separated fields:
relation_id <TAB> term <TAB> hypernym
where:
- relation_id: is a relation identifier;
- term: is a term of the taxonomy;
- hypernym: is a hypernym for the term.
e.g
0<TAB>cat<TAB>animal
1<TAB>dog<TAB>animal
2<TAB>car<TAB>animal
....
Comparative Evaluation
|
INRIASAC |
LT3 |
ntnu |
QASSIT |
TALN-UPF |
USAAR |
Cycles |
3 |
4 |
2 |
1 |
3 |
4 |
Cumulative Fowlkes&Mallows Measure |
2 |
1 |
6 |
3 |
4 |
5 |
Intermediate nodes |
2 |
5 |
3 |
6 |
4 |
1 |
"Gold Standard evaluation (F-score ranking)" |
2 |
1 |
4 |
5 |
6 |
3 |
No of domains submitted |
1 |
3 |
1 |
2 |
1 |
1 |
"Manual evaluation (Precision ranking)" |
2 |
1 |
4 |
5 |
6 |
3 |
Final Ranking |
1 |
2 |
4 |
5 |
6 |
3 |
vertex coverage
|
chemical |
wn_chemical |
equipment |
wn_equipment |
food |
wn_food |
science |
wn_science |
INRIASAC |
0.7037 |
0.9829 |
0.8300 |
0.9789 |
0.8425 |
0.9730 |
0.9159 |
0.8531 |
LT3 |
n.a. |
n.a. |
0.4248 |
0.9726 |
0.4389 |
0.9899 |
0.6327 |
0.8624 |
ntnu |
0.0333 |
0.5965 |
0.1046 |
0.5242 |
0.1356 |
0.4973 |
0.2300 |
0.6480 |
QASSIT |
n.a. |
0.9985 |
0.9918 |
1.0000 |
0.8695 |
1.0000 |
0.9977 |
0.8624 |
TALN-UPF |
1.0000 |
0.9970 |
1.0000 |
1.0000 |
0.8695 |
1.0000 |
0.9977 |
0.8624 |
USAAR-WLV |
0.7838 |
0.8675 |
0.5490 |
0.7431 |
0.6092 |
0.8068 |
0.7831 |
0.7132 |
|
Avg chemical |
Avg equipment |
Avg food |
Avg science |
Avg |
INRIASAC |
0.8433 |
0.90445 |
0.90775 |
0.8845 |
0.885 |
LT3 |
n.a |
0.6987 |
0.7144 |
0.74755 |
0.7202 |
ntnu |
0.3149 |
0.314385 |
0.31645 |
0.439 |
0.34618375 |
QASSIT |
n.a |
0.9959 |
0.93475 |
0.93005 |
0.9609 |
TALN-UPF |
0.9985 |
1.0000 |
0.93475 |
0.93005 |
0.965825 |
USAAR-WLV |
0.82565 |
0.64605 |
0.708 |
0.74815 |
0.7319625 |
edge coverage
|
chemical |
wn_chemical |
equipment |
wn_equipment |
food |
wn_food |
science |
wn_science |
INRIASAC |
0.0969 |
0.4657 |
0.4959 |
0.3793 |
0.5179 |
0.4735 |
0.4494 |
0.5442 |
LT3 |
n.a. |
n.a. |
0.3219 |
0.9484 |
0.2974 |
0.9719 |
0.3806 |
0.8639 |
ntnu |
0.0013 |
0.5594 |
0.0065 |
0.4597 |
0.0541 |
0.4664 |
0.0451 |
0.6122 |
QASSIT |
n.a. |
0.0843 |
0.2455 |
0.1979 |
0.0655 |
0.0593 |
0.2559 |
0.2902 |
TALN-UPF |
0.0004 |
0.0930 |
0.1577 |
0.0453 |
0.0359 |
0.0782 |
0.0172 |
0.1111 |
USAAR-WLV |
0.0977 |
0.3835 |
0.3691 |
0.3072 |
0.2696 |
0.3581 |
0.3720 |
0.3537 |
|
Avg chemical |
Avg equipment |
Avg food |
Avg science |
Avg |
INRIASAC |
0.2813 |
0.4376 |
0.4957 |
0.4968 |
0.42785 |
LT3 |
n.a |
0.63515 |
0.63465 |
0.62225 |
0.6306 |
ntnu |
0.28035 |
0.2331 |
0.26025 |
0.32865 |
0.2755875 |
QASSIT |
n.a |
0.2217 |
0.0624 |
0.27305 |
0.1712 |
TALN-UPF |
0.0467 |
0.1015 |
0.05705 |
0.06415 |
0.06735 |
USAAR-WLV |
0.2406 |
0.33815 |
0.31385 |
0.36285 |
0.3138625 |
ratio of novel edges
|
chemical |
wn_chemical |
equipment |
wn_equipment |
food |
wn_food |
science |
wn_science |
INRIASAC |
1.0491 |
2.8586 |
1.4032 |
2.4432 |
2.2312 |
2.2909 |
2.0537 |
1.9546 |
LT3 |
n.a. |
n.a. |
0.1365 |
2.0453 |
0.7309 |
3.5375 |
0.5677 |
2.7029 |
ntnu |
0.0616 |
0.7779 |
0.3951 |
2.2886 |
0.7189 |
1.3339 |
0.7849 |
0.9319 |
QASSIT |
n.a. |
0.9105 |
0.7528 |
0.8123 |
0.9174 |
0.9445 |
0.8430 |
0.6984 |
TALN-UPF |
0.7089 |
0.9531 |
0.9235 |
6.9030 |
0.9527 |
0.9315 |
3.4731 |
0.7800 |
USAAR-WLV |
1.1268 |
1.8566 |
0.5219 |
0.8206 |
1.4265 |
1.9021 |
1.6752 |
1.6689 |
|
Avg chemical |
Avg equipment |
Avg food |
Avg science |
Avg |
INRIASAC |
1.95385 |
1.9232 |
2.26105 |
2.00415 |
2.0355625 |
LT3 |
n.a |
1.0909 |
2.1342 |
1.6353 |
1.6201 |
ntnu |
0.41975 |
1.34185 |
1.0264 |
0.8584 |
0.9116 |
QASSIT |
n.a |
0.78255 |
0.93095 |
0.7707 |
0.8398 |
TALN-UPF |
0.831 |
3.91325 |
0.9421 |
2.12655 |
1.953225 |
USAAR-WLV |
1.4917 |
0.67125 |
1.6643 |
1.67205 |
1.374825 |
Average Precision, Recall, and F-measure against gold standard
|
INRIASAC |
LT3 |
ntnu |
QASSIT |
TALN-UPF |
USAAR-WLV |
Avg. P |
0.1721 |
0.3612 |
0.1754 |
0.1563 |
0.0720 |
0.2014 |
Avg. R |
0.4279 |
0.6307 |
0.2756 |
0.1588 |
0.1165 |
0.3139 |
Avg. F |
0.2427 |
0.3886 |
0.2075 |
0.1575 |
0.0798 |
0.2377 |
Cumulative Fowlkes&Mallows Measure
|
chemical |
wn_chemical |
equipment |
wn_equipment |
food |
wn_food |
science |
wn_science |
INRIASAC |
0.2353 |
0.0084 |
0.4905 |
0.0700 |
0.4522 |
0.4804 |
0.4706 |
0.4153 |
LT3 |
n.a |
n.a |
0.1137 |
0.6892 |
0.2163 |
0.5899 |
0.3303 |
0.5391 |
ntnu |
0.0009 |
0.0719 |
0.0000 |
0.0935 |
0.0076 |
0.2673 |
0.0088 |
0.0158 |
QASSIT |
n.a |
0.3947 |
0.4881 |
0.3637 |
0.3405 |
0.3153 |
0.5232 |
0.2921 |
TALN-UPF |
0.2225 |
0.2787 |
0.4482 |
0.0901 |
0.3267 |
0.3091 |
0.2202 |
0.2126 |
USAAR-WLV |
0.00001 |
0.2103 |
0.0000 |
0.0015 |
0.0037 |
0.0036 |
0.2249 |
0.1721 |
|
Avg chemical |
Avg equipment |
Avg food |
Avg science |
Avg |
INRIASAC |
0.12185 |
0.28025 |
0.4663 |
0.44295 |
0.3278375 |
LT3 |
n.a |
0.40145 |
0.4031 |
0.4347 |
0.4130 |
ntnu |
0.0364 |
0.04675 |
0.13745 |
0.0123 |
0.058225 |
QASSIT |
n.a. |
0.4259 |
0.3279 |
0.40765 |
0.3882 |
TALN-UPF |
0.2506 |
0.26915 |
0.3179 |
0.2164 |
0.2635125 |
USAAR-WLV |
0.105155 |
0.00075 |
0.00365 |
0.1985 |
0.07701375 |
Precision of novel edges
|
equipment |
food |
science |
wn_equipment |
wn_food |
wn_science |
Avg. prec. |
INRIASAC |
59 |
37 |
51 |
63 |
37 |
41 |
48.0 |
LT3 |
94 |
58 |
69 |
53 |
44 |
40 |
59.6 |
ntnu |
40 |
32 |
23 |
27 |
41 |
49 |
35.3 |
QASSIT |
44 |
1 |
38 |
21 |
2 |
42 |
24.7 |
TALN-UPF |
14 |
2 |
13 |
12 |
11 |
9 |
10.2 |
USAAR |
80 |
34 |
34 |
45 |
25 |
34 |
42.0 |
Detailed Evaluation
Domain: chemical
Gold Standard download
The gold standard is an excerpt of the ChEBI1 chemical ontology.
Structural measures
Measure |
gold standard |
INRIASAC |
LT3 |
ntnu |
QASSIT |
TALN-UPF |
USAAR-WLV |
|V| |
17584 |
12432 |
n.a |
1114 |
n.a. |
17584 |
13785 |
|E| |
24817 |
28444 |
n.a |
1563 |
n.a. |
17606 |
30392 |
# c.c. |
1 |
293 |
n.a |
116 |
n.a. |
1 |
302 |
cycles |
NO |
YES |
n.a |
NO |
n.a. |
NO |
YES |
Comparison against gold standard
Measure |
INRIASAC |
LT3 |
ntnu |
QASSIT |
TALN-UPF |
USAAR-WLV |
# vertices in common |
12374 |
n.a |
586 |
n.a. |
17584 |
13784 |
vertex coverage |
0.7037 |
n.a |
0.0333 |
n.a. |
1.0 |
0.7838 |
# edges in common |
2407 |
n.a |
34 |
n.a. |
11 |
2427 |
edge coverage |
0.0969 |
n.a |
0.0013 |
n.a. |
0.0004 |
0.0977 |
ratio of novel edges |
1.0491 |
n.a |
0.0616 |
n.a. |
0.7089 |
1.1268 |
Measure |
INRIASAC |
LT3 |
ntnu |
QASSIT |
TALN-UPF |
USAAR-WLV |
P |
0.0846 |
n.a |
0.0217 |
n.a |
0.0006 |
0.0798 |
R |
0.0969 |
n.a |
0.0013 |
n.a |
0.0004 |
0.0977 |
F |
0.0903 |
n.a |
0.0025 |
n.a |
0.0005 |
0.0879 |
|
Cumulative Fowlkes&Mallows Measure: |
INRIASAC |
0.2353 |
LT3 |
n.a. |
ntnu |
0.0009 |
QASSIT |
n.a. |
TALN-UPF |
0.2225 |
USAAR-WLV |
0.00001 |
Domain: equipment
Gold Standard download
The gold standard is an excerpt of the Material Handling Equipment2 combined with IS-A relations from WiBi3
Structural measures
Measure |
gold standard |
INRIASAC |
LT3 |
ntnu |
QASSIT |
TALN-UPF |
USAAR-WLV |
|V| |
612 |
520 |
260 |
251 |
610 |
612 |
337 |
|E| |
615 |
1168 |
282 |
247 |
614 |
665 |
548 |
# c.c. |
1 |
6 |
10 |
35 |
1 |
1 |
28 |
cycles |
NO |
NO |
YES |
NO |
NO |
YES |
YES |
Comparison against gold standard
Measure |
INRIASAC |
LT3 |
ntnu |
QASSIT |
TALN-UPF |
USAAR-WLV |
# vertices in common |
508 |
260 |
64 |
607 |
612 |
336 |
vertex coverage |
0.8300 |
0.4248 |
0.10457 |
0.9918 |
1.0 |
0.5490 |
# edges in common |
305 |
198 |
4 |
151 |
97 |
227 |
edge coverage |
0.4959 |
0.3219 |
0.0065 |
0.2455 |
0.1577 |
0.3691 |
ratio of novel edges |
1.4032 |
0.1365 |
0.3951 |
0.7528 |
0.9235 |
0.5219 |
precision, recall and F-measure
Measure |
INRIASAC |
LT3 |
ntnu |
QASSIT |
TALN-UPF |
USAAR-WLV |
P |
0.2611 |
0.7021 |
0.0161 |
0.2459 |
0.1458 |
0.4142 |
R |
0.4959 |
0.3219 |
0.0065 |
0.2455 |
0.1577 |
0.3691 |
F |
0.3421 |
0.4414 |
0.0092 |
0.2457 |
0.1515 |
0.3903 |
|
Cumulative Fowlkes&Mallows Measure: |
INRIASAC |
0.4905 |
LT3 |
0.1137 |
ntnu |
0 |
QASSIT |
0.4881 |
TALN-UPF |
0.4482 |
USAAR-WLV |
0.0018 |
Domain: food
Gold Standard download
The gold standard is an excerpt of the The Google product taxonomy4 combined with IS-A relations from WiBi3
Structural measures
Measure |
gold standard |
INRIASAC |
LT3 |
ntnu |
QASSIT |
TALN-UPF |
USAAR-WLV |
|V| |
1156 |
1518 |
819 |
834 |
1550 |
1549 |
1118 |
|E| |
1587 |
4363 |
1632 |
1227 |
1560 |
1569 |
2692 |
# c.c. |
1 |
2 |
6 |
27 |
1 |
1 |
23 |
cycles |
NO |
YES |
YES |
YES |
YES |
NO |
YES |
Comparison against gold standard
Measure |
INRIASAC |
LT3 |
ntnu |
QASSIT |
TALN-UPF |
USAAR-WLV |
# vertices in common |
1311 |
683 |
211 |
1353 |
1353 |
948 |
vertex coverage |
0.8425 |
0.4389 |
0.1356 |
0.8695 |
0.8695 |
0.6092 |
# edges in common |
822 |
472 |
86 |
104 |
57 |
428 |
edge coverage |
0.5179 |
0.2974 |
0.0541 |
0.0655 |
0.0359 |
0.2696 |
ratio of novel edges |
2.2312 |
0.7309 |
0.7189 |
0.9174 |
0.9527 |
1.4265 |
precision, recall and F-MEasure
Measure |
INRIASAC |
LT3 |
ntnu |
QASSIT |
TALN-UPF |
USAAR-WLV |
P |
0.1884 |
0.2892 |
0.0700 |
0.0666 |
0.0363 |
0.1589 |
R |
0.5179 |
0.2974 |
0.0541 |
0.0655 |
0.0359 |
0.2696 |
F |
0.2763 |
0.2932 |
0.0611 |
0.0660 |
0.0361 |
0.2000 |
|
Cumulative Fowlkes&Mallows Measure: |
INRIASAC |
0.4522 |
LT3 |
0.2163 |
ntnu |
0.0076 |
QASSIT |
0.3405 |
TALN-UPF |
0.3267 |
USAAR-WLV |
0.0037 |
Domain: science
Gold Standard download
The gold standard is an excerpt of the The TAXONOMY OF FIELDS AND THEIR SUBFIELDS5 combined with IS-A relations from WiBi3
Structural measures
Measure |
gold standard |
INRIASAC |
LT3 |
ntnu |
QASSIT |
TALN-UPF |
USAAR-WLV |
|V| |
452 |
417 |
287 |
338 |
453 |
1280 |
355 |
|E| |
465 |
1164 |
441 |
386 |
511 |
1623 |
952 |
# c.c. |
1 |
3 |
8 |
23 |
1 |
1 |
14 |
cycles |
NO |
NO |
YES |
NO |
NO |
YES |
YES |
Comparison against gold standard
Measure |
INRIASAC |
LT3 |
ntnu |
QASSIT |
TALN-UPF |
USAAR-WLV |
# vertices in common |
414 |
286 |
104 |
451 |
451 |
354 |
vertex coverage |
0.9159 |
0.6327 |
0.2300 |
0.9977 |
0.9977 |
0.7831 |
# edges in common |
209 |
177 |
21 |
104 |
119 |
173 |
edge coverage |
0.4494 |
0.3806 |
0.0451 |
0.2559 |
0.0172 |
0.3720 |
ratio of novel edges |
2.0537 |
0.5677 |
0.7849 |
0.8430 |
3.4731 |
1.6752 |
precision, recall and F-measure
Measure |
INRIASAC |
LT3 |
ntnu |
QASSIT |
TALN-UPF |
USAAR-WLV |
P |
0.1795 |
0.4013 |
0.0544 |
0.2035 |
0.0733 |
0.1817 |
R |
0.4494 |
0.3806 |
0.0451 |
0.2236 |
0.2559 |
0.3720 |
F |
0.2565 |
0.3907 |
0.0493 |
0.2131 |
0.1139 |
0.2441 |
|
Cumulative Fowlkes&Mallows Measure: |
INRIASAC |
0.4706 |
LT3 |
0.3303 |
ntnu |
0.0088 |
QASSIT |
0.5232 |
TALN-UPF |
0.2202 |
USAAR-WLV |
0.2249 |
Domain: wn_chemical
Gold Standard download
The gold standard relations were extracted from the Wordnet6 taxonomy under the node "chemical".
Structural measures
Measure |
gold standard |
INRIASAC |
LT3 |
ntnu |
QASSIT |
TALN-UPF |
USAAR-WLV |
|V| |
1351 |
1913 |
n.a |
1475 |
1351 |
1347 |
1173 |
|E| |
1387 |
4611 |
n.a |
1855 |
1380 |
1451 |
3107 |
# c.c. |
1 |
2 |
n.a |
28 |
1 |
1 |
31 |
cycles |
NO |
YES |
n.a |
YES |
NO |
YES |
YES |
Comparison against gold standard
Measure |
INRIASAC |
LT3 |
ntnu |
QASSIT |
TALN-UPF |
USAAR-WLV |
# vertices in common |
1328 |
n.a |
806 |
1349 |
1347 |
1172 |
vertex coverage |
0.9829 |
n.a |
0.5965 |
0.9985 |
0.9970 |
0.8675 |
# edges in common |
646 |
n.a |
776 |
117 |
129 |
532 |
edge coverage |
0.4657 |
n.a |
0.5594 |
0.0843 |
0.0930 |
0.3835 |
ratio of novel edges |
2.8586 |
n.a |
0.7779 |
0.9105 |
0.9531 |
1.8566 |
precision, recall and F-measure
Measure |
INRIASAC |
LT3 |
ntnu |
QASSIT |
TALN-UPF |
USAAR-WLV |
P |
0.1400 |
n.a. |
0.4183 |
0.0847 |
0.0889 |
0.1712 |
R |
0.4657 |
n.a. |
0.5594 |
0.0843 |
0.0930 |
0.3835 |
F |
0.2154 |
n.a. |
0.4787 |
0.0845 |
0.0909 |
0.2367 |
|
Cumulative Fowlkes&Mallows Measure: |
INRIASAC |
0.0084 |
LT3 |
n.a. |
ntnu |
0.0719 |
QASSIT |
0.3947 |
TALN-UPF |
0.2787 |
USAAR-WLV |
0.2103 |
Domain: wn_equipment
Structural measures
Gold Standard download
The gold standard relations were extracted from the Wordnet6 taxonomy under the node "equipment".
Measure |
gold standard |
INRIASAC |
LT3 |
ntnu |
QASSIT |
TALN-UPF |
USAAR-WLV |
|V| |
475 |
468 |
462 |
1081 |
476 |
2574 |
354 |
|E| |
485 |
1369 |
1452 |
1333 |
490 |
3370 |
547 |
# c.c. |
1 |
1 |
1 |
12 |
1 |
1 |
43 |
cycles |
NO |
YES |
YES |
YES |
NO |
YES |
YES |
Comparison against gold standard
Measure |
INRIASAC |
LT3 |
ntnu |
QASSIT |
TALN-UPF |
USAAR-WLV |
# vertices in common |
465 |
462 |
249 |
475 |
475 |
353 |
vertex coverage |
0.9789 |
0.9726 |
0.5242 |
1.0 |
1.0 |
0.7431 |
# edges in common |
184 |
460 |
223 |
96 |
97 |
149 |
edge coverage |
0.3793 |
0.9484 |
0.4597 |
0.1979 |
0.0453 |
0.3072 |
ratio of novel edges |
2.4432 |
2.0453 |
2.2886 |
0.8123 |
6.9030 |
0.8206 |
precision, recall and F-measure
Measure |
INRIASAC |
LT3 |
ntnu |
QASSIT |
TALN-UPF |
USAAR-WLV |
P |
0.1344 |
0.3168 |
0.1672 |
0.1959 |
0.0287 |
0.2723 |
R |
0.3793 |
0.9484 |
0.4597 |
0.1979 |
0.2000 |
0.3072 |
F |
0.1984 |
0.4749 |
0.2453 |
0.1969 |
0.0503 |
0.2887 |
|
Cumulative Fowlkes&Mallows Measure: |
INRIASAC |
0.0700 |
LT3 |
0.6892 |
ntnu |
0.0935 |
QASSIT |
0.3637 |
TALN-UPF |
0.0901 |
USAAR-WLV |
0.0015 |
Domain: wn_food
Gold Standard download
The gold standard relations were extracted from the Wordnet6 taxonomy under the node "food"
Structural measures
Measure |
gold standard |
INRIASAC |
LT3 |
ntnu |
QASSIT |
TALN-UPF |
USAAR-WLV |
|V| |
1486 |
1458 |
1471 |
1834 |
1478 |
1486 |
1200 |
|E| |
1533 |
4238 |
6913 |
2760 |
1539 |
1548 |
3465 |
# c.c. |
1 |
2 |
1 |
35 |
1 |
1 |
23 |
cycles |
NO |
NO |
YES |
YES |
NO |
YES |
YES |
Comparison against gold standard
Measure |
INRIASAC |
LT3 |
ntnu |
QASSIT |
TALN-UPF |
USAAR-WLV |
# vertices in common |
1446 |
1471 |
739 |
1486 |
1486 |
1199 |
vertex coverage |
0.9730 |
0.9899 |
0.4973 |
1.0 |
1.0 |
0.8068 |
# edges in common |
726 |
1490 |
715 |
91 |
120 |
549 |
edge coverage |
0.4735 |
0.9719 |
0.4664 |
0.0593 |
0.0782 |
0.3581 |
ratio of novel edges |
2.2909 |
3.5375 |
1.3339 |
0.9445 |
0.9315 |
1.9021 |
precision, recall adn F-measure
Measure |
INRIASAC |
LT3 |
ntnu |
QASSIT |
TALN-UPF |
USAAR-WLV |
P |
0.1713 |
0.2155 |
0.2590 |
0.0591 |
0.0775 |
0.1584 |
R |
0.4735 |
0.9719 |
0.4664 |
0.0593 |
0.0782 |
0.3581 |
F |
0.2516 |
0.3528 |
0.3331 |
0.0592 |
0.0778 |
0.2196 |
|
Cumulative Fowlkes&Mallows Measure: |
INRIASAC |
0.4804 |
LT3 |
0.5899 |
ntnu |
0.2673 |
QASSIT |
0.3153 |
TALN-UPF |
0.3091 |
USAAR-WLV |
0.0036 |
Domain: wn_science
Gold Standard download
The gold standard relations were extracted from the Wordnet6 taxonomy under the node "science"
Structural measures
Measure |
gold standard |
INRIASAC |
LT3 |
ntnu |
QASSIT |
TALN-UPF |
USAAR-WLV |
|V| |
429 |
366 |
370 |
524 |
371 |
370 |
307 |
|E| |
441 |
1102 |
1573 |
681 |
436 |
393 |
892 |
# c.c. |
1 |
1 |
1 |
11 |
1 |
1 |
8 |
cycles |
NO |
YES |
YES |
NO |
NO |
NO |
YES |
Comparison against gold standard
Measure |
INRIASAC |
LT3 |
ntnu |
QASSIT |
TALN-UPF |
USAAR-WLV |
# vertices in common |
366 |
370 |
278 |
370 |
370 |
306 |
vertex coverage |
0.8531 |
0.8624 |
0.6480 |
0.8624 |
0.8624 |
0.7132 |
# edges in common |
240 |
381 |
270 |
104 |
49 |
156 |
edge coverage |
0.5442 |
0.8639 |
0.6122 |
0.2902 |
0.1111 |
0.3537 |
ratio of novel edges |
1.9546 |
2.7029 |
0.9319 |
0.6984 |
0.7800 |
1.6689 |
precision, recall and F-measure
Measure |
INRIASAC |
LT3 |
ntnu |
QASSIT |
TALN-UPF |
USAAR-WLV |
P |
0.2177 |
0.2422 |
0.3964 |
0.2385 |
0.1246 |
0.1748 |
R |
0.5442 |
0.8639 |
0.6122 |
0.2358 |
0.1111 |
0.3537 |
F |
0.3110 |
0.3783 |
0.4812 |
0.2371 |
0.1175 |
0.2340 |
|
Cumulative Fowlkes&Mallows Measure: |
INRIASAC |
0.4153 |
LT3 |
0.5391 |
ntnu |
0.0158 |
QASSIT |
0.2921 |
TALN-UPF |
0.2126 |
USAAR-WLV |
0.1721 |
References
1. Degtyarenko Kirill, de Matos Paula, Ennis Marcus, Hastings Janna, Zbinden Martin, McNaught Alan, Alcantara Rafael, Darsow Michael, Guedj Mickael and Ashburner Michael ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Research, 36:suppl 1, D344-D350, 2008.
2. Material Handling Equipment taxonomy, http://www.ise.ncsu.edu/kay/mhetax/index.htm.
3. Tiziano Flati, Daniele Vannella, Tommaso Pasini, Roberto Navigli. Two Is Bigger (and Better) Than One: the Wikipedia Bitaxonomy Project. Proc. of the 52nd Annual Meeting of the Association for Computational Linguistics (ACL 2014), Baltimore, Maryland, USA June 22-27, 2014.
4. The Google product taxonomy. http://www.google.com/basepages/producttype/taxonomy.en-US.txt
5. TAXONOMY OF FIELDS AND THEIR SUBFIELDS, http://sites.nationalacademies.org/PGA/Resdoc/PGA_044522
6. Fellbaum, Christiane (2005). WordNet and wordnets. In: Brown, Keith et al. (eds.), Encyclopedia of Language and Linguistics, Second Edition, Oxford: Elsevier, 665-670
7. P. Velardi, S. Faralli, R. Navigli. OntoLearn Reloaded: A Graph-based Algorithm for Taxonomy Induction. Computational Linguistics, 39(3), MIT Press, 2013, pp. 665-707.