pdf |
bib |
Front matter |
pages |
pdf |
bib |
SemEval-2015 Task 1: Paraphrase and Semantic Similarity in Twitter (PIT) Wei Xu, Chris Callison-Burch and Bill Dolan |
pp. 1–11 |
pdf |
bib |
MITRE: Seven Systems for Semantic Similarity in Tweets Guido Zarrella, John Henderson, Elizabeth M. Merkhofer and Laura Strickhart |
pp. 12–17 |
pdf |
bib |
CICBUAPnlp: Graph-Based Approach for Answer Selection in Community Question Answering Task Helena Gomez, Darnes Vilariño, David Pinto and Grigori Sidorov |
pp. 18–22 |
pdf |
bib |
HLTC-HKUST: A Neural Network Paraphrase Classifier using Translation Metrics, Semantic Roles and Lexical Similarity Features Dario Bertero and Pascale Fung |
pp. 23–28 |
pdf |
bib |
FBK-HLT: An Effective System for Paraphrase Identification and Semantic Similarity in Twitter Ngoc Phuoc An Vo, Simone Magnolini and Octavian Popescu |
pp. 29–33 |
pdf |
bib |
ECNU: Leveraging Word Embeddings to Boost Performance for Paraphrase in Twitter Jiang Zhao and Man Lan |
pp. 34–39 |
pdf |
bib |
ROB: Using Semantic Meaning to Recognize Paraphrases Rob van der Goot and Gertjan van Noord |
pp. 40–44 |
pdf |
bib |
AMRITA_CEN@SemEval-2015: Paraphrase Detection for Twitter using Unsupervised Feature Learning with Recursive Autoencoders Mahalakshmi Shanumuga Sundaram, Anand Kumar Madasamy and Soman Kotti Padannayil |
pp. 45–50 |
pdf |
bib |
Ebiquity: Paraphrase and Semantic Similarity in Twitter using Skipgrams Taneeya Satyapanich, Hang Gao and Tim Finin |
pp. 51–55 |
pdf |
bib |
RTM-DCU: Predicting Semantic Similarity with Referential Translation Machines Ergun Bicici |
pp. 56–63 |
pdf |
bib |
Twitter Paraphrase Identification with Simple Overlap Features and SVMs Asli Eyecioglu and Bill Keller |
pp. 64–69 |
pdf |
bib |
TKLBLIIR: Detecting Twitter Paraphrases with TweetingJay Mladen Karan, Goran Glavaš, Jan Šnajder, Bojana Dalbelo Bašić, Ivan Vulić and Marie-Francine Moens |
pp. 70–74 |
pdf |
bib |
CDTDS: Predicting Paraphrases in Twitter via Support Vector Regression Rafael - Michael Karampatsis |
pp. 75–79 |
pdf |
bib |
yiGou: A Semantic Text Similarity Computing System Based on SVM Yang Liu, Chengjie Sun, Lei Lin and Xiaolong Wang |
pp. 80–84 |
pdf |
bib |
USAAR-SHEFFIELD: Semantic Textual Similarity with Deep Regression and Machine Translation Evaluation Metrics Liling Tan, Carolina Scarton, Lucia Specia and Josef van Genabith |
pp. 85–89 |
pdf |
bib |
TrWP: Text Relatedness using Word and Phrase Relatedness Md Rashadul Hasan Rakib, Aminul Islam and Evangelos Milios |
pp. 90–95 |
pdf |
bib |
MiniExperts: An SVM Approach for Measuring Semantic Textual Similarity Hanna Béchara, Hernani Costa, Shiva Taslimipoor, Rohit Gupta, Constantin Orasan, Gloria Corpas Pastor and Ruslan Mitkov |
pp. 96–101 |
pdf |
bib |
FBK-HLT: A New Framework for Semantic Textual Similarity Ngoc Phuoc An Vo, Simone Magnolini and Octavian Popescu |
pp. 102–106 |
pdf |
bib |
UMDuluth-BlueTeam: SVCSTS - A Multilingual and Chunk Level Semantic Similarity System Sakethram Karumuri, Viswanadh Kumar Reddy Vuggumudi and Sai Charan Raj Chitirala |
pp. 107–110 |
pdf |
bib |
SemantiKLUE: Semantic Textual Similarity with Maximum Weight Matching Nataliia Plotnikova, Gabriella Lapesa, Thomas Proisl and Stefan Evert |
pp. 111–116 |
pdf |
bib |
ECNU: Using Traditional Similarity Measurements and Word Embedding for Semantic Textual Similarity Estimation Jiang Zhao, Man Lan and Jun Feng Tian |
pp. 117–122 |
pdf |
bib |
UQeResearch: Semantic Textual Similarity Quantification Hamed Hassanzadeh, Tudor Groza, Anthony Nguyen and Jane Hunter |
pp. 123–127 |
pdf |
bib |
WSL: Sentence Similarity Using Semantic Distance Between Words Naoko Miura and Tomohiro Takagi |
pp. 128–131 |
pdf |
bib |
SOPA: Random Forests Regression for the Semantic Textual Similarity task Davide Buscaldi, Jorge Garcia Flores, Ivan V. Meza and Isaac Rodriguez |
pp. 132–137 |
pdf |
bib |
MathLingBudapest: Concept Networks for Semantic Similarity Gábor Recski and Judit Ács |
pp. 138–142 |
pdf |
bib |
DCU: Using Distributional Semantics and Domain Adaptation for the Semantic Textual Similarity SemEval-2015 Task 2 Piyush Arora, Chris Hokamp, Jennifer Foster and Gareth Jones |
pp. 143–147 |
pdf |
bib |
DLS@CU: Sentence Similarity from Word Alignment and Semantic Vector Composition Md Arafat Sultan, Steven Bethard and Tamara Sumner |
pp. 148–153 |
pdf |
bib |
FCICU: The Integration between Sense-Based Kernel and Surface-Based Methods to Measure Semantic Textual Similarity Basma Hassan, Samir AbdelRahman and Reem Bahgat |
pp. 154–158 |
pdf |
bib |
AZMAT: Sentence Similarity Using Associative Matrices Evan Jaffe, Lifeng Jin, David King and Marten van Schijndel |
pp. 159–163 |
pdf |
bib |
NeRoSim: A System for Measuring and Interpreting Semantic Textual Similarity Rajendra Banjade, Nobal Bikram Niraula, Nabin Maharjan, Vasile Rus, Dan Stefanescu, Mihai Lintean and Dipesh Gautam |
pp. 164–171 |
pdf |
bib |
Samsung: Align-and-Differentiate Approach to Semantic Textual Similarity Lushan Han, Justin Martineau, Doreen Cheng and Christopher Thomas |
pp. 172–177 |
pdf |
bib |
UBC: Cubes for English Semantic Textual Similarity and Supervised Approaches for Interpretable STS Eneko Agirre, Aitor Gonzalez-Agirre, Inigo Lopez-Gazpio, Montse Maritxalar, German Rigau and Larraitz Uria |
pp. 178–183 |
pdf |
bib |
ASAP-II: From the Alignment of Phrases to Textual Similarity Ana Alves, David Simões, Hugo Gonçalo Oliveira and Adriana Ferrugento |
pp. 184–189 |
pdf |
bib |
TATO: Leveraging on Multiple Strategies for Semantic Textual Similarity Tu Thanh Vu, Quan Hung Tran and Son Bao Pham |
pp. 190–195 |
pdf |
bib |
HITSZ-ICRC: Exploiting Classification Approach for Answer Selection in Community Question Answering Yongshuai Hou, Cong Tan, Xiaolong Wang, Yaoyun Zhang, Jun Xu and Qingcai Chen |
pp. 196–202 |
pdf |
bib |
QCRI: Answer Selection for Community Question Answering - Experiments for Arabic and English Massimo Nicosia, Simone Filice, Alberto Barrón-Cedeño, Iman Saleh, Hamdy Mubarak, Wei Gao, Preslav Nakov, Giovanni Da San Martino, Alessandro Moschitti, Kareem Darwish, Lluís Màrquez, Shafiq Joty and Walid Magdy |
pp. 203–209 |
pdf |
bib |
ICRC-HIT: A Deep Learning based Comment Sequence Labeling System for Answer Selection Challenge Xiaoqiang Zhou, Baotian Hu, Jiaxin Lin, Yang xiang and Xiaolong Wang |
pp. 210–214 |
pdf |
bib |
JAIST: Combining multiple features for Answer Selection in Community Question Answering Quan Hung Tran, Vu Tran, Tu Vu, Minh Nguyen and Son Bao Pham |
pp. 215–219 |
pdf |
bib |
Shiraz: A Proposed List Wise Approach to Answer Validation Amin Heydari Alashty, Saeed Rahmani, Meysam Roostaee and Mostafa Fakhrahmad |
pp. 220–225 |
pdf |
bib |
Al-Bayan: A Knowledge-based System for Arabic Answer Selection Reham Mohamed, Maha Ragab, Heba Abdelnasser, Nagwa M. El-Makky and Marwan Torki |
pp. 226–230 |
pdf |
bib |
FBK-HLT: An Application of Semantic Textual Similarity for Answer Selection in Community Question Answering Ngoc Phuoc An Vo, Simone Magnolini and Octavian Popescu |
pp. 231–235 |
pdf |
bib |
ECNU: Using Multiple Sources of CQA-based Information for Answers Selection and YES/NO Response Inference Liang Yi, JianXiang Wang and Man Lan |
pp. 236–241 |
pdf |
bib |
Voltron: A Hybrid System For Answer Validation Based On Lexical And Distance Features Ivan Zamanov, Marina Kraeva, Nelly Hateva, Ivana Yovcheva, Ivelina Nikolova and Galia Angelova |
pp. 242–246 |
pdf |
bib |
CoMiC: Adapting a Short Answer Assessment System for Answer Selection Björn Rudzewitz and Ramon Ziai |
pp. 247–251 |
pdf |
bib |
SemEval-2015 Task 2: Semantic Textual Similarity, English, Spanish and Pilot on Interpretability Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei Guo, Inigo Lopez-Gazpio, Montse Maritxalar, Rada Mihalcea, German Rigau, Larraitz Uria and Janyce Wiebe |
pp. 252–263 |
pdf |
bib |
ExB Themis: Extensive Feature Extraction from Word Alignments for Semantic Textual Similarity Christian Hänig, Robert Remus and Xose de la Puente |
pp. 264–268 |
pdf |
bib |
SemEval-2015 Task 3: Answer Selection in Community Question Answering Preslav Nakov, Lluís Màrquez, Walid Magdy, Alessandro Moschitti, Jim Glass and Bilal Randeree |
pp. 269–281 |
pdf |
bib |
VectorSLU: A Continuous Word Vector Approach to Answer Selection in Community Question Answering Systems Yonatan Belinkov, Mitra Mohtarami, Scott Cyphers and James Glass |
pp. 282–287 |
pdf |
bib |
SemEval-2015 Task 13: Multilingual All-Words Sense Disambiguation and Entity Linking Andrea Moro and Roberto Navigli |
pp. 288–297 |
pdf |
bib |
LIMSI: Translations as Source of Indirect Supervision for Multilingual All-Words Sense Disambiguation and Entity Linking Marianna Apidianaki and Li Gong |
pp. 298–302 |
pdf |
bib |
SemEval-2015 Task 14: Analysis of Clinical Text Noémie Elhadad, Sameer Pradhan, Sharon Gorman, Suresh Manandhar, Wendy Chapman and Guergana Savova |
pp. 303–310 |
pdf |
bib |
UTH-CCB: The Participation of the SemEval 2015 Challenge – Task 14 Jun Xu, Yaoyun Zhang, Jingqi Wang, Yonghui Wu, Min Jiang, Ergin Soysal and Hua Xu |
pp. 311–314 |
pdf |
bib |
SemEval-2015 Task 15: A CPA dictionary-entry-building task Vít Baisa, Jane Bradbury, Silvie Cinkova, Ismail El Maarouf, Adam Kilgarriff and Octavian Popescu |
pp. 315–324 |
pdf |
bib |
BLCUNLP: Corpus Pattern Analysis for Verbs Based on Dependency Chain Yukun Feng, Qiao Deng and Dong Yu |
pp. 325–328 |
pdf |
bib |
WSD-games: a Game-Theoretic Algorithm for Unsupervised Word Sense Disambiguation Rocco Tripodi and Marcello Pelillo |
pp. 329–334 |
pdf |
bib |
DFKI: Multi-objective Optimization for the Joint Disambiguation of Entities and Nouns & Deep Verb Sense Disambiguation Dirk Weissenborn, Feiyu Xu and Hans Uszkoreit |
pp. 335–339 |
pdf |
bib |
EBL-Hope: Multilingual Word Sense Disambiguation Using a Hybrid Knowledge-Based Technique Eniafe Festus Ayetiran and Guido Boella |
pp. 340–344 |
pdf |
bib |
VUA-background : When to Use Background Information to Perform Word Sense Disambiguation Marten Postma, Ruben Izquierdo and Piek Vossen |
pp. 345–349 |
pdf |
bib |
TeamUFAL: WSD+EL as Document Retrieval Petr Fanta, Roman Sudarikov and Ondrej Bojar |
pp. 350–354 |
pdf |
bib |
EL92: Entity Linking Combining Open Source Annotators via Weighted Voting Pablo Ruiz and Thierry Poibeau |
pp. 355–359 |
pdf |
bib |
UNIBA: Combining Distributional Semantic Models and Sense Distribution for Multilingual All-Words Sense Disambiguation and Entity Linking Pierpaolo Basile, Annalina Caputo and Giovanni Semeraro |
pp. 360–364 |
pdf |
bib |
SUDOKU: Treating Word Sense Disambiguation & Entitiy Linking as a Deterministic Problem - via an Unsupervised & Iterative Approach Steve L. Manion |
pp. 365–369 |
pdf |
bib |
TeamHCMUS: Analysis of Clinical Text Nghia Huynh and Quoc Ho |
pp. 370–374 |
pdf |
bib |
UTU: Adapting Biomedical Event Extraction System to Disorder Attribute Detection Kai Hakala |
pp. 375–379 |
pdf |
bib |
IHS-RD-Belarus: Identification and Normalization of Disorder Concepts in Clinical Notes Maryna Chernyshevich and Vadim Stankevitch |
pp. 380–384 |
pdf |
bib |
UWM: A Simple Baseline Method for Identifying Attributes of Disease and Disorder Mentions in Clinical Text Omid Ghiasvand and Rohit Kate |
pp. 385–388 |
pdf |
bib |
TAKELAB: Medical Information Extraction and Linking with MINERAL Goran Glavaš |
pp. 389–393 |
pdf |
bib |
TMUNSW: Identification of Disorders and Normalization to SNOMED-CT Terminology in Unstructured Clinical Notes Jitendra Jonnagaddala, Siaw-Teng Liaw, Pradeep Ray, Manish Kumar and Hong-Jie Dai |
pp. 394–398 |
pdf |
bib |
UtahPOET: Disorder Mention Identification and Context Slot Filling with Cognitive Inspiration Kristina Doing-Harris, Sean Igo, Jianlin Shi and John Hurdle |
pp. 399–405 |
pdf |
bib |
ULisboa: Recognition and Normalization of Medical Concepts André Leal, Bruno Martins and Francisco Couto |
pp. 406–411 |
pdf |
bib |
ezDI: A Supervised NLP System for Clinical Narrative Analysis Parth Pathak, Pinal Patel, Vishal Panchal, Sagar Soni, Kinjal Dani, Amrish Patel and Narayan Choudhary |
pp. 412–416 |
pdf |
bib |
CUAB: Supervised Learning of Disorders and their Attributes using Relations James Gung, John Osborne and Steven Bethard |
pp. 417–421 |
pdf |
bib |
BioinformaticsUA: Machine Learning and Rule-Based Recognition of Disorders and Clinical Attributes from Patient Notes Sérgio Matos, José Sequeira and José Luís Oliveira |
pp. 422–426 |
pdf |
bib |
LIST-LUX: Disorder Identification from Clinical Texts Asma Ben Abacha, Aikaterini Karanasiou, Yassine Mrabet and Julio Cesar Dos Reis |
pp. 427–432 |
pdf |
bib |
CMILLS: Adapting Semantic Role Labeling Features to Dependency Parsing Chad Mills and Gina-Anne Levow |
pp. 433–437 |
pdf |
bib |
Duluth: Word Sense Discrimination in the Service of Lexicography Ted Pedersen |
pp. 438–442 |
pdf |
bib |
SemEval-2015 Task 9: CLIPEval Implicit Polarity of Events Irene Russo, Tommaso Caselli and Carlo Strapparava |
pp. 443–450 |
pdf |
bib |
SemEval-2015 Task 10: Sentiment Analysis in Twitter Sara Rosenthal, Preslav Nakov, Svetlana Kiritchenko, Saif Mohammad, Alan Ritter and Veselin Stoyanov |
pp. 451–463 |
pdf |
bib |
UNITN: Training Deep Convolutional Neural Network for Twitter Sentiment Classification Aliaksei Severyn and Alessandro Moschitti |
pp. 464–469 |
pdf |
bib |
SemEval-2015 Task 11: Sentiment Analysis of Figurative Language in Twitter Aniruddha Ghosh, Guofu Li, Tony Veale, Paolo Rosso, Ekaterina Shutova, John Barnden and Antonio Reyes |
pp. 470–478 |
pdf |
bib |
CLaC-SentiPipe: SemEval2015 Subtasks 10 B,E, and Task 11 Canberk Özdemir and Sabine Bergler |
pp. 479–485 |
pdf |
bib |
SemEval-2015 Task 12: Aspect Based Sentiment Analysis Maria Pontiki, Dimitris Galanis, Haris Papageorgiou, Suresh Manandhar and Ion Androutsopoulos |
pp. 486–495 |
pdf |
bib |
NLANGP: Supervised Machine Learning System for Aspect Category Classification and Opinion Target Extraction Zhiqiang Toh and Jian Su |
pp. 496–501 |
pdf |
bib |
SHELLFBK: An Information Retrieval-based System For Multi-Domain Sentiment Analysis Mauro Dragoni |
pp. 502–509 |
pdf |
bib |
DIEGOLab: An Approach for Message-level Sentiment Classification in Twitter Abeed Sarker, Azadeh Nikfarjam, Davy Weissenbacher and Graciela Gonzalez |
pp. 510–514 |
pdf |
bib |
Splusplus: A Feature-Rich Two-stage Classifier for Sentiment Analysis of Tweets Li Dong, Furu Wei, Yichun Yin, Ming Zhou and Ke Xu |
pp. 515–519 |
pdf |
bib |
IIIT-H at SemEval 2015: Twitter Sentiment Analysis – The Good, the Bad and the Neutral! Ayushi Dalmia, Manish Gupta and Vasudeva Varma |
pp. 520–526 |
pdf |
bib |
CIS-positive: A Combination of Convolutional Neural Networks and Support Vector Machines for Sentiment Analysis in Twitter Sebastian Ebert, Ngoc Thang Vu and Hinrich Schütze |
pp. 527–532 |
pdf |
bib |
GTI: An Unsupervised Approach for Sentiment Analysis in Twitter Milagros Fernández-Gavilanes, Tamara Álvarez-López, Jonathan Juncal-Martínez, Enrique Costa-Montenegro and Francisco Javier González-Castaño |
pp. 533–538 |
pdf |
bib |
Gradiant-Analytics: Training Polarity Shifters with CRFs for Message Level Polarity Detection Héctor Cerezo-Costas and Diego Celix-Salgado |
pp. 539–544 |
pdf |
bib |
IOA: Improving SVM Based Sentiment Classification Through Post Processing Peijia Li, Weiqun Xu, Chenglong Ma, Jia Sun and Yonghong Yan |
pp. 545–550 |
pdf |
bib |
RoseMerry: A Baseline Message-level Sentiment Classification System Huizhi Liang, Richard Fothergill and Timothy Baldwin |
pp. 551–555 |
pdf |
bib |
UDLAP: Sentiment Analysis Using a Graph-Based Representation Esteban Castillo, Ofelia Cervantes, Darnes Vilariño, David Báez and Alfredo Sánchez |
pp. 556–560 |
pdf |
bib |
ECNU: Multi-level Sentiment Analysis on Twitter Using Traditional Linguistic Features and Word Embedding Features Zhihua Zhang, Guoshun Wu and Man Lan |
pp. 561–567 |
pdf |
bib |
Lsislif: Feature Extraction and Label Weighting for Sentiment Analysis in Twitter Hussam Hamdan, Patrice Bellot and Frederic Bechet |
pp. 568–573 |
pdf |
bib |
ELiRF: A SVM Approach for SA tasks in Twitter at SemEval-2015 Mayte Giménez, Ferran Pla and Lluís-F. Hurtado |
pp. 574–581 |
pdf |
bib |
Webis: An Ensemble for Twitter Sentiment Detection Matthias Hagen, Martin Potthast, Michel Büchner and Benno Stein |
pp. 582–589 |
pdf |
bib |
Sentibase: Sentiment Analysis in Twitter on a Budget Satarupa Guha, Aditya Joshi and Vasudeva Varma |
pp. 590–594 |
pdf |
bib |
UNIBA: Sentiment Analysis of English Tweets Combining Micro-blogging, Lexicon and Semantic Features Pierpaolo Basile and Nicole Novielli |
pp. 595–600 |
pdf |
bib |
IITPSemEval: Sentiment Discovery from 140 Characters Ayush Kumar, Vamsi Krishna and Asif Ekbal |
pp. 601–607 |
pdf |
bib |
Swiss-Chocolate: Combining Flipout Regularization and Random Forests with Artificially Built Subsystems to Boost Text-Classification for Sentiment Fatih Uzdilli, Martin Jaggi, Dominic Egger, Pascal Julmy, Leon Derczynski and Mark Cieliebak |
pp. 608–612 |
pdf |
bib |
INESC-ID: A Regression Model for Large Scale Twitter Sentiment Lexicon Induction Silvio Amir, Wang Ling, Ramón Astudillo, Bruno Martins, Mario J. Silva and Isabel Trancoso |
pp. 613–618 |
pdf |
bib |
KLUEless: Polarity Classification and Association Nataliia Plotnikova, Micha Kohl, Kevin Volkert, Stefan Evert, Andreas Lerner, Natalie Dykes and Heiko Ermer |
pp. 619–625 |
pdf |
bib |
SWASH: A Naive Bayes Classifier for Tweet Sentiment Identification Ruth Talbot, Chloe Acheampong and Richard Wicentowski |
pp. 626–630 |
pdf |
bib |
SWATCS65: Sentiment Classification Using an Ensemble of Class Projects Richard Wicentowski |
pp. 631–635 |
pdf |
bib |
SWATAC: A Sentiment Analyzer using One-Vs-Rest Logistic Regression Yousef Alhessi and Richard Wicentowski |
pp. 636–639 |
pdf |
bib |
TwitterHawk: A Feature Bucket Based Approach to Sentiment Analysis William Boag, Peter Potash and Anna Rumshisky |
pp. 640–646 |
pdf |
bib |
SeNTU: Sentiment Analysis of Tweets by Combining a Rule-based Classifier with Supervised Learning Prerna Chikersal, Soujanya Poria and Erik Cambria |
pp. 647–651 |
pdf |
bib |
INESC-ID: Sentiment Analysis without Hand-Coded Features or Linguistic Resources using Embedding Subspaces Ramón Astudillo, Silvio Amir, Wang Ling, Bruno Martins, Mario J. Silva and Isabel Trancoso |
pp. 652–656 |
pdf |
bib |
WarwickDCS: From Phrase-Based to Target-Specific Sentiment Recognition Richard Townsend, Adam Tsakalidis, Yiwei Zhou, Bo Wang, Maria Liakata, Arkaitz Zubiaga, Alexandra Cristea and Rob Procter |
pp. 657–663 |
pdf |
bib |
UIR-PKU: Twitter-OpinMiner System for Sentiment Analysis in Twitter at SemEval 2015 Xu Han, Binyang Li, Jing Ma, Yuxiao Zhang, Gaoyan Ou, Tengjiao Wang and Kam-fai Wong |
pp. 664–668 |
pdf |
bib |
SWAT-CMW: Classification of Twitter Emotional Polarity using a Multiple-Classifier Decision Schema and Enhanced Emotion Tagging Riley Collins, Daniel May, Noah Weinthal and Richard Wicentowski |
pp. 669–672 |
pdf |
bib |
LLT-PolyU: Identifying Sentiment Intensity in Ironic Tweets Hongzhi Xu, Enrico Santus, Anna Laszlo and Chu-Ren Huang |
pp. 673–678 |
pdf |
bib |
KELabTeam: A Statistical Approach on Figurative Language Sentiment Analysis in Twitter Hoang Long Nguyen, Trung Duc Nguyen, Dosam Hwang and Jason J. Jung |
pp. 679–683 |
pdf |
bib |
LT3: Sentiment Analysis of Figurative Tweets: piece of cake #NotReally Cynthia Van Hee, Els Lefever and Veronique Hoste |
pp. 684–688 |
pdf |
bib |
PRHLT: Combination of Deep Autoencoders with Classification and Regression Techniques for SemEval-2015 Task 11 Parth Gupta and Jon Ander Gómez |
pp. 689–693 |
pdf |
bib |
ValenTo: Sentiment Analysis of Figurative Language Tweets with Irony and Sarcasm Delia Irazú Hernández Farías, Emilio Sulis, Viviana Patti, Giancarlo Ruffo and Cristina Bosco |
pp. 694–698 |
pdf |
bib |
CPH: Sentiment analysis of Figurative Language on Twitter #easypeasy #not Sarah McGillion, Héctor Martínez Alonso and Barbara Plank |
pp. 699–703 |
pdf |
bib |
UPF-taln: SemEval 2015 Tasks 10 and 11. Sentiment Analysis of Literal and Figurative Language in Twitter Francesco Barbieri, Francesco Ronzano and Horacio Saggion |
pp. 704–708 |
pdf |
bib |
DsUniPi: An SVM-based Approach for Sentiment Analysis of Figurative Language on Twitter Maria Karanasou, Christos Doulkeridis and Maria Halkidi |
pp. 709–713 |
pdf |
bib |
V3: Unsupervised Aspect Based Sentiment Analysis for SemEval2015 Task 12 Aitor García Pablos, Montse Cuadros and German Rigau |
pp. 714–718 |
pdf |
bib |
LT3: Applying Hybrid Terminology Extraction to Aspect-Based Sentiment Analysis Orphee De Clercq, Marjan Van de Kauter, Els Lefever and Veronique Hoste |
pp. 719–724 |
pdf |
bib |
UFRGS: Identifying Categories and Targets in Customer Reviews Anderson Kauer and Viviane Moreira |
pp. 725–729 |
pdf |
bib |
SINAI: Syntactic Approach for Aspect-Based Sentiment Analysis Salud M. Jiménez-Zafra, Eugenio Martínez-Cámara, M. Teresa Martín-Valdivia and L. Alfonso Ureña López |
pp. 730–735 |
pdf |
bib |
ECNU: Extracting Effective Features from Multiple Sequential Sentences for Target-dependent Sentiment Analysis in Reviews Zhihua Zhang and Man Lan |
pp. 736–741 |
pdf |
bib |
UMDuluth-CS8761-12: A Novel Machine Learning Approach for Aspect Based Sentiment Analysis Ravikanth Repaka, Ranga Reddy Pallelra, Akshay Reddy Koppula and Venkata Subhash Movva |
pp. 742–747 |
pdf |
bib |
EliXa: A Modular and Flexible ABSA Platform Iñaki San Vicente, Xabier Saralegi and Rodrigo Agerri |
pp. 748–752 |
pdf |
bib |
Lsislif: CRF and Logistic Regression for Opinion Target Extraction and Sentiment Polarity Analysis Hussam Hamdan, Patrice Bellot and Frederic Bechet |
pp. 753–758 |
pdf |
bib |
SIEL: Aspect Based Sentiment Analysis in Reviews Satarupa Guha, Aditya Joshi and Vasudeva Varma |
pp. 759–766 |
pdf |
bib |
Sentiue: Target and Aspect based Sentiment Analysis in SemEval-2015 Task 12 José Saias |
pp. 767–771 |
pdf |
bib |
TJUdeM: A Combination Classifier for Aspect Category Detection and Sentiment Polarity Classification Zhifei Zhang, Jian-Yun Nie and Hongling Wang |
pp. 772–777 |
pdf |
bib |
SemEval-2015 Task 4: TimeLine: Cross-Document Event Ordering Anne-Lyse Minard, Manuela Speranza, Eneko Agirre, Itziar Aldabe, Marieke van Erp, Bernardo Magnini, German Rigau and Ruben Urizar |
pp. 778–786 |
pdf |
bib |
SPINOZA_VU: An NLP Pipeline for Cross Document TimeLines Tommaso Caselli, Antske Fokkens, Roser Morante and Piek Vossen |
pp. 787–791 |
pdf |
bib |
SemEval-2015 Task 5: QA TempEval - Evaluating Temporal Information Understanding with Question Answering Hector Llorens, Nathanael Chambers, Naushad UzZaman, Nasrin Mostafazadeh, James Allen and James Pustejovsky |
pp. 792–800 |
pdf |
bib |
HLT-FBK: a Complete Temporal Processing System for QA TempEval Paramita Mirza and Anne-Lyse Minard |
pp. 801–805 |
pdf |
bib |
SemEval-2015 Task 6: Clinical TempEval Steven Bethard, Leon Derczynski, Guergana Savova, James Pustejovsky and Marc Verhagen |
pp. 806–814 |
pdf |
bib |
BluLab: Temporal Information Extraction for the 2015 Clinical TempEval Challenge Sumithra Velupillai, Danielle L Mowery, Samir Abdelrahman, Lee Christensen and Wendy Chapman |
pp. 815–819 |
pdf |
bib |
GPLSIUA: Combining Temporal Information and Topic Modeling for Cross-Document Event Ordering Borja Navarro and Estela Saquete |
pp. 820–824 |
pdf |
bib |
HeidelToul: A Baseline Approach for Cross-document Event Ordering Bilel Moulahi, Jannik Strötgen, Michael Gertz and Lynda Tamine |
pp. 825–829 |
pdf |
bib |
HITSZ-ICRC: An Integration Approach for QA TempEval Challenge Yongshuai Hou, Cong Tan, Qingcai Chen and Xiaolong Wang |
pp. 830–834 |
pdf |
bib |
UFPRSheffield: Contrasting Rule-based and Support Vector Machine Approaches to Time Expression Identification in Clinical TempEval Hegler Tissot, Genevieve Gorrell, Angus Roberts, Leon Derczynski and Marcos Didonet Del Fabro |
pp. 835–839 |
pdf |
bib |
IXAGroupEHUDiac: A Multiple Approach System towards the Diachronic Evaluation of Texts Haritz Salaberri, Iker Salaberri, Olatz Arregi and Beñat Zapirain |
pp. 840–845 |
pdf |
bib |
USAAR-CHRONOS: Crawling the Web for Temporal Annotations Liling Tan and Noam Ordan |
pp. 846–850 |
pdf |
bib |
AMBRA: A Ranking Approach to Temporal Text Classification Marcos Zampieri, Alina Maria Ciobanu, Vlad Niculae and Liviu P. Dinu |
pp. 851–855 |
pdf |
bib |
IXAGroupEHUSpaceEval: (X-Space) A WordNet-based approach towards the Automatic Recognition of Spatial Information following the ISO-Space Annotation Scheme Haritz Salaberri, Olatz Arregi and Beñat Zapirain |
pp. 856–861 |
pdf |
bib |
UTD: Ensemble-Based Spatial Relation Extraction Jennifer D’Souza and Vincent Ng |
pp. 862–869 |
pdf |
bib |
SemEval 2015, Task 7: Diachronic Text Evaluation Octavian Popescu and Carlo Strapparava |
pp. 870–878 |
pdf |
bib |
UCD : Diachronic Text Classification with Character, Word, and Syntactic N-grams Terrence Szymanski and Gerard Lynch |
pp. 879–883 |
pdf |
bib |
SemEval-2015 Task 8: SpaceEval James Pustejovsky, Parisa Kordjamshidi, Marie-Francine Moens, Aaron Levine, Seth Dworman and Zachary Yocum |
pp. 884–894 |
pdf |
bib |
SpRL-CWW: Spatial Relation Classification with Independent Multi-class Models Eric Nichols and Fadi Botros |
pp. 895–901 |
pdf |
bib |
SemEval-2015 Task 17: Taxonomy Extraction Evaluation (TExEval) Georgeta Bordea, Paul Buitelaar, Stefano Faralli and Roberto Navigli |
pp. 902–910 |
pdf |
bib |
INRIASAC: Simple Hypernym Extraction Methods Gregory Grefenstette |
pp. 911–914 |
pdf |
bib |
SemEval 2015 Task 18: Broad-Coverage Semantic Dependency Parsing Stephan Oepen, Marco Kuhlmann, Yusuke Miyao, Daniel Zeman, Silvie Cinkova, Dan Flickinger, Jan Hajic and Zdenka Uresova |
pp. 915–926 |
pdf |
bib |
Peking: Building Semantic Dependency Graphs with a Hybrid Parser Yantao Du, Fan Zhang, Xun Zhang, Weiwei Sun and Xiaojun Wan |
pp. 927–931 |
pdf |
bib |
USAAR-WLV: Hypernym Generation with Deep Neural Nets Liling Tan, Rohit Gupta and Josef van Genabith |
pp. 932–937 |
pdf |
bib |
NTNU: An Unsupervised Knowledge Approach for Taxonomy Extraction Bamfa Ceesay and Wen Juan Hou |
pp. 938–943 |
pdf |
bib |
LT3: A Multi-modular Approach to Automatic Taxonomy Construction Els Lefever |
pp. 944–948 |
pdf |
bib |
TALN-UPF: Taxonomy Learning Exploiting CRF-Based Hypernym Extraction on Encyclopedic Definitions Luis Espinosa Anke, Horacio Saggion and Francesco Ronzano |
pp. 949–954 |
pdf |
bib |
QASSIT: A Pretopological Framework for the Automatic Construction of Lexical Taxonomies from Raw Texts Guillaume Cleuziou, Davide Buscaldi, Gaël Dias, Vincent Levorato and Christine Largeron |
pp. 955–959 |
pdf |
bib |
Riga: from FrameNet to Semantic Frames with C6.0 Rules Guntis Barzdins, Peteris Paikens and Didzis Gosko |
pp. 960–964 |
pdf |
bib |
Turku: Semantic Dependency Parsing as a Sequence Classification Jenna Kanerva, Juhani Luotolahti and Filip Ginter |
pp. 965–969 |
pdf |
bib |
Lisbon: Evaluating TurboSemanticParser on Multiple Languages and Out-of-Domain Data Mariana S. C. Almeida and André F. T. Martins |
pp. 970–973 |
Last modified on May 6, 2015, 11:56 a.m.