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Abstract

End-to-end training makes the neural ma-
chine translation (NMT) architecture sim-
pler, yet elegant compared to traditional
statistical machine translation (SMT).
However, little is known about linguis-
tic patterns of morphology, syntax and
semantics learned during the training of
NMT systems, and more importantly,
which parts of the architecture are re-
sponsible for learning each of these phe-
nomena. In this paper we i) analyze
how much morphology an NMT decoder
learns, and ii) investigate whether inject-
ing target morphology into the decoder
helps it produce better translations. To
this end we present three methods: i) joint
generation, ii) joint-data learning, and iii)
multi-task learning. Our results show that
explicit morphological information helps
the decoder learn target language mor-
phology and improves the translation qual-
ity by 0.2–0.6 BLEU points.

1 Introduction

Neural machine translation (NMT) offers an el-
egant end-to-end architecture, improving transla-
tion quality compared to traditional phrase-based
machine translation. These improvements are at-
tributed to more fluent output (Toral and Sánchez-
Cartagena, 2017) and better handling of mor-
phology and long-range dependencies (Bentivogli
et al., 2016). However, systematic studies are re-
quired to understand what kinds of linguistic phe-
nomena (morphology, syntax, semantics, etc.) are
learned by these models and more importantly,
which of the components is responsible for each
phenomenon.

A few attempts have been made to understand

what NMT models learn about morphology (Be-
linkov et al., 2017a), syntax (Shi et al., 2016)
and semantics (Belinkov et al., 2017b). Shi et al.
(2016) used activations at various layers from the
NMT encoder to predict syntactic properties on
the source-side, while Belinkov et al. (2017a) and
Belinkov et al. (2017b) used a similar approach to
investigate the quality of word representations on
the task of morphological and semantic tagging.

Belinkov et al. (2017a) found that word rep-
resentations learned from the encoder are rich in
morphological information, while representations
learned from the decoder are significantly poorer.
However, the paper does not present a convincing
explanation for this finding. Our first contribution
in this work is to provide a more comprehensive
analysis of morphological learning on the decoder
side. We hypothesize that other components of the
NMT architecture – specifically the encoder and
the attention mechanism, learn enough informa-
tion about the target language morphology for the
decoder to perform reasonably well, without in-
corporating high levels of morphological knowl-
edge into the decoder. To probe this hypothesis,
we investigate the following questions:

• What is the effect of attention on the perfor-
mance of the decoder?

• How much does the encoder help the decoder
in predicting the correct morphological vari-
ant of the word it generates?

To answer these questions, we train NMT mod-
els for different language pairs, involving mor-
phologically rich languages such as German and
Czech. We then use the trained models to ex-
tract features from the decoder for words in the
language of interest. Finally we train a classifier
using the extracted features to predict the morpho-
logical tag of the words. The accuracy of this ex-



ternal classifier gives us a quantitative measure of
how well the NMT model learned features that are
relevant to morphology. Our results indicate that
both the encoder and the attention mechanism aid
the decoder in generating correct morphological
forms, and thus limit the need of the decoder to
learn target morphology.

Motivated by these findings, we hypothesize
that it may be possible to force the decoder to learn
more about morphology by injecting the morpho-
logical information during training which can in
turn improve the overall translation quality. In
order to test this hypothesis, we experiment with
three possible solutions:

1. Joint Generation: An NMT model is trained
on the concatenation of words and morpho-
logical tags on the target side.

2. Joint-data learning: An NMT model is
trained where each source sequence is used
twice with an artificial token to either predict
target words or morphological tags.

3. Multi-task learning: A multi-task NMT sys-
tem with two objective functions is trained
to jointly learn translation and morphological
tagging.

Our experiments show that word representations
learned after explicitly injecting target morphol-
ogy improve morphological tagging accuracy of
the decoder by 3% and also improves the trans-
lation quality by up to 0.6 BLEU points.

The remainder of this paper is organized as fol-
lows. Section 2 describes our experimental setup.
Section 3 shows an analysis of the decoder. Sec-
tion 4 describes the three proposed methods to in-
tegrate morphology into the decoder. Section 5
presents the results. Section 6 gives an account
of related work and Section 7 concludes the paper.

2 Experimental Design

Parallel Data
We used the German-English and Czech-English
datasets from the WIT3 TED corpus (Cettolo,
2016) made available for IWSLT 2016. We used
the official training sets to analyze and evaluate
the proposed methods for integrating morphology
. The corpus also provides four test sets, test-11
through test-14. We used test-11 for tuning, and
the other test sets for evaluation. The statistics for
the sets are provided in Table 1.

Language-pair Sentences tokde/cz token

De↔En 210K 4M 4.2M
Cz↔En 122K 2.1M 2.5M

Table 1: Statistics for the data used for training,
tuning and testing

Morphological Annotations

In order to train and evaluate the external classifier
on the extracted features, we required data anno-
tated with morphological tags. We used the fol-
lowing tools recommended on the Moses website1

to annotate the data: LoPar (Schmid, 2000) for
German, Tree-tagger (Schmid, 1994) for Czech
and MXPOST (Ratnaparkhi, 1998) for English.
The number of tags produced by these taggers is
214 for German and 368 for Czech.

Data preprocessing

We used the standard MT pre-processing pipeline
of tokenizing and truecasing the data using Moses
(Koehn et al., 2007) scripts. We did not apply
byte-pair encoding (BPE) (Sennrich et al., 2016b),
which has recently become a common part of the
NMT pipeline, because both our analysis and the
annotation tools are word level.2 However, ex-
perimenting with BPE and other representations
such as character-based models (Kim et al., 2015)
would be interesting.3

NMT Systems

We used the seq2seq-attn implementation
(Kim, 2016) with the following default settings:
word embeddings and LSTM states with 500 di-
mensions, SGD with an initial learning rate of 1.0
and decay rate of 0.5 (after the 9th epoch), and
dropout rate of 0.3. We use two uni-directional

1These have been used frequently to annotate data in the
previous evaluation campaigns (Birch et al., 2014; Durrani
et al., 2014).

2The difficulty with using these is that it is not straight-
forward to derive word representations out of a decoder that
processes BPE-ed text, because the original words are split
into subwords. We considered aggregating the representa-
tions of BPE subword units, but the choice of aggregation
strategy may have an undesired impact on the analysis. For
this reason we decided to leave exploration of BPE for future
work.

3Character-based models are becoming increasingly pop-
ular in Neural MT, for addressing the rare word problem
– and they have been used previously also to benefit MT
for morphologically rich (Luong et al., 2010; Belinkov and
Glass, 2016; Costa-jussà and Fonollosa, 2016) and closely
related languages (Durrani and Koehn, 2014; Sajjad et al.,
2013).



Figure 1: Features for the word Nun (DECt1) are
extracted from the decoder of a pre-trained NMT
system and provided to the classifier for training

hidden layers for both the encoder and the decoder.
The NMT system is trained for 13 epochs, and the
model with the best validation loss is used for ex-
tracting features for the external classifier. We use
a vocabulary size of 50000 on both the source and
target side.

Classifier Settings

For the classification task, we used a feed-forward
network with one hidden layer, dropout (ρ = 0.5),
a ReLU non-linearity, and an output layer map-
ping to the tag set (followed by a Softmax). The
size of the hidden layer is set to be identical to the
size of the NMT decoder’s hidden state (500 di-
mensions). The classifier has no explicit access to
context other than the hidden representation gener-
ated by the NMT system, which allows us to focus
on the quality of the representation. We use Adam
(Kingma and Ba, 2014) with default parameters to
minimize the cross-entropy objective.

3 Decoder Analysis

3.1 Methodology

We follow a process similar to Shi et al. (2016)
and Belinkov et al. (2017a) to analyze the NMT
systems but with a focus on the decoder compo-
nent of the architecture. Formally, given a source
sentence s = {s1, s2, ..., sN} and a target sen-
tence t = {t1, t2, ..., tM}, we first use the encoder
(Equation 1) to compute a set of hidden states
h = {h1, h2, ..., hN}. We then use an attention

mechanism (Bahdanau et al., 2014) to compute a
weighted average of these hidden states from the
previous decoder state (di−1), known as the con-
text vector ci (Equation 2). The context vector is a
real valued vector of k dimensions, which is set to
be the same as the hidden states in our case. The
attention model computes a weight whi

for each
hidden state of the encoder, thus giving soft align-
ment for each target word. The context vector is
then used by the decoder (Equation 3) to generate
the next word in the target sequence:

ENC : s = {s1, ..., sN} 7→ h = {h1, ..., hN} (1)

ATTNi : h, di−1, ti−1 7→ ci ∈ Rk(1 ≤ i ≤M) (2)
DEC : {c1, ..., cM} 7→ t = {t1, t2, ..., tM} (3)

After training the NMT system, we freeze the pa-
rameters of the network and use the encoder or the
decoder as a feature extractor to generate vectors
representing words in the sentence. Let ENCsi de-
note the representation of a source word si. We
use ENCsi to train the external classifier that for
predicting the morphological tag for si and evalu-
ate the quality of the representation based on our
ability to train a good classifier. For word repre-
sentations on the target side, we feed our word of
interest ti as the previously predicted word, and
extract the representation DECti from the higher
layers (See Figure 1 for illustration).

Note that in the decoder, the target word rep-
resentations DECti are not learned for predicting
the word ti, but the next word (ti+1). Hence, it is
arguable that DECti actually captures morpholog-
ical information about ti+1 rather than ti, which
can also explain the poorer decoder accuracies. To
test this argument, we also trained our systems as-
suming that DECti encodes morphological infor-
mation about the next word ti+1. In this case,
the decoder performance dropped by almost 15%.
DECti probably encodes morphological informa-
tion about both the current word (ti) and the next
word (ti+1). However, we leave this exploration
for future work, and work with the assumption that
DECti encodes information about word ti.

3.2 Analysis

Before diving into the decoder’s performance, we
first compare the performance of encoder ver-
sus decoder by training De↔En4 and Cz↔En

4By De↔En, we mean independently trained German-to-
English and English-to-German models.



Baseline ENCsi DECti

De↔En 89.5 44.55
Cz↔En 77.0 36.35

Table 2: Comparison of morphological accuracy
for the encoder and decoder representations

NMT models. We use the De→En/Cz→En mod-
els to extract encoder representations, and the
En→De/En→Cz models to extract decoder rep-
resentations. We then feed these representations
to our classifier to predict morphological tags
for German and Czech words. Table 2 shows
that German and Czech representations learned
on the encoder-side (using the De→En/Cz→En
models) give much better accuracy compared to
the ones learned on the decoder-side (using the
En→De/En→Cz models).

Given this difference in performance between
the two components in our NMT system, we ana-
lyze the decoder further in various settings: com-
paring the performance i) with and without the
attention mechanism, and ii) augmenting the de-
coder representation with the representation of the
most attended source word. The baseline NMT
models were trained with an attention mechanism.
In an attempt to probe what effect the attention
mechanism has on the decoder’s performance in
the context of learning target language morphol-
ogy, we trained NMT models without attention.
Next we tried to take our baseline model (with at-
tention) and augment its decoder representations
with the encoder hidden state corresponding to
the maximum attention (hereby denoted as ENCti).
Our hypothesis is that since the decoder focuses
on this hidden state to output the next target word,
it may also encode some useful information about
target morphology. Lastly, we also train a classi-
fier on ENCti alone in order to compare the ability
of the encoder and decoder in learning target lan-
guage morphology.

Table 3 summarizes the results of these experi-
ments. Comparing systems with (DECti) and with-
out attention (w/o-ATTN), we see that the ac-
curacy on the morphological tagging task goes
up when no attention is used. This can be ex-
plained by the fact that in the case of no attention,
the decoder only receives a single context vector
from the encoder and it has to learn more infor-
mation about each target word to make accurate
predictions. It is difficult for the encoder to trans-

DECti w/o-ATTN DECti+ENCti ENCti

En→De 44.55 50.26 60.34 43.43
En→Cz 36.35 42.09 48.64 36.36

Table 3: Morphological Tagging accuracy of the
Decoder with and without attention, and effect
of considering the most attended source word
(ENCti)

fer information about each target word using the
same context vector cleanly, causing the decoder
to learn more, resulting in better decoder perfor-
mance in regards to the morphological information
learned.

The second part of the table presents results in-
volving encoder representations to aid morpholog-
ical analysis of target words. There is a signif-
icant boost in the classifier’s performance when
the decoder representation for a target word ti
is concatenated with the encoder representation
of the most attended source word (DECti+ENCti).
This hints towards several hypotheses: i) because
the source and target words are translations, they
share some morphological properties (e.g. nouns
get translated to nouns, etc.), ii) the encoder also
learns and stores information about the target lan-
guage, so that the attention mechanism can make
use of this information while deciding which word
to focus on next. To ensure that the encoder
and decoder indeed learn different information, we
also tried to classify the morphological tag of a
given word ti based on the encoder representation
of the most attended source word alone (ENCti).
We see a drop in accuracy, showing that both en-
coder and decoder learned different things about
the same target word and are complementary rep-
resentations. We can also see that the accuracy of
the combined representation (DECti+ENCti) still
lags behind the encoder’s performance in predict-
ing source morphology (Table 2). This indicates
that there is still room for improvement in the
NMT model’s ability to learn target side morphol-
ogy.

In this section, we showed that the encoder and
decoder learn different amounts of morphology
due to the varying nature of their tasks within
NMT architecture. The decoder depends on the
encoder and attention mechanism to generate the
correct morphological variant of a target word.



Figure 2: Various approaches to inject morphological knowledge into the decoder

4 Morphology-aware Decoder

Motivated by the result that the decoder learns
considerably less amount of morphology than the
encoder (Table 2) and the overall system does not
learn as much about target morphology as source
morphology, we investigated three ways to di-
rectly inject target morphology into the decoder,
namely: i) Joint Generation, ii) Joint-data Learn-
ing, iii) Multi-task Learning. Figure 2 illustrates
the approaches.

4.1 Joint Generation

As our first approach, we considered a solution
that uses the standard NMT architecture, but is
trained on a modified dataset. To incorporate
morphological information, we modify the target
sentence by appending the morphological tag se-
quence to it. The NMT system trained on this
data learns to produce both words and morpho-
logical tags simultaneously. Formally, given a
source sentence s = {s1, ..., sN}, target sentence
t = {t1, ..., tM} and its morphological sequence
m = {m1, ...,mM}, we train an NMT system on
(s′, t′) pairs, where s′ = s and t′ = t + m. Al-
though this model is quite weak and the (word and
morphological) bases are quite far away, we posit
that the attention mechanism might be able to at-
tend to the same source word twice. Given this, the
decoder gets a similar representation from which it
has to predict a word in the first instance, and a tag
in the second - thus helping in common learning
for the two tasks.

4.2 Joint-data Learning

Given the drawbacks of the first approach, we
considered another data augmentation technique
inspired by multilingual NMT systems (Johnson
et al., 2016). Instead of having multiple source
and target languages, we used one source language
and two target language variations. The training
data consists of sequences of source→target words
and source→target morphological tags. We added
an artificial token in the beginning of each source
sentence indicating whether we want to generate
target words or morphological tags. Using an ar-
tificial token in the source sentence has been ex-
plored and shown to work well to control the style
of the target language (Sennrich et al., 2016a). The
objective function is the same as the one in usual
sequence-to-sequence models, and is hence shared
to minimize both morphological and translation
error given the mixed data.

4.3 Multi-task Learning

In this final method, we decided to follow a more
principled approach and modified the standard
sequence-to-sequence for multi-task learning. The
goal in multi-task training is to learn several tasks
simultaneously such that each task can benefit
from the mutual information learned (Collobert
and Weston, 2008). 5 With this motivation, we
modified the NMT decoder to predict not only a
word but also its corresponding tag. All of the lay-
ers below the output layers are shared. We have

5For example, Eriguchi et al. (2017) jointly learned the
tasks of parsing and translation.



Figure 3: Improvements from adding morphology. A y-value of zero represents the baseline

two output layers in parallel – the first to predict
the target word, and the second to predict the mor-
phological tag of the target word. Both ouput lay-
ers have their own separate loss function. While
training, we combine the losses from both output
layers to jointly train the system. This is different
from the Joint-data learning technique, where we
predict entire sequences of words or tags without
any dependence on each other.

Formally, given a set of N tasks, sequence-to-
sequence multi-task learning involves an objec-
tive function minimizing the overall loss, which
is a weighted combination of the N individual
task losses. In our scenario, the training corpus
consisted of a multi-target corpus: source→target
words and source→target morphological tags, i.e
N = 2. Hence, given a set of training exam-
ples D = {〈s(n), t(n),m(n)〉}Nn=1, where s is the
source sentence, t is the target sentence and m is
the target morphological tag sequence, the new ob-
jective function to maximize is as follows:

L =(1− λ)
N∑

n=1

logP (t(n)|s(n); θ)

+ λ

N∑
n=1

logP (m(n)|s(n); θ)

Where λ is a hyper-parameter used to shift focus
towards translation or the morphological tagging.6

5 Results and Discussion

Our results show that the multi-task learning ap-
proach performed the best among the three ap-
proaches, while the Joint Generation method has

6We tuned the weight parameter on held-out data.

the poorest performance. Figure 3 summarizes the
results for different language pairs. The joint gen-
eration method degrades overall translation per-
formance, as expected, given its weakness from
a modeling perspective. It is possible that even
though the attention mechanism is able to focus on
the source sequence in two passes, the parts of the
network that predict words and tags are not tightly
coupled enough to learn from each other.

The BLEU scores improved when using the
other two methods. We achieved an improvement
of up to 0.6 BLEU points and 3% (in tagging accu-
racy). The best improvements were obtained in the
En→De direction, while we observed lesser gains
in the De→En. This is perhaps because English is
morphologically poorer, and the baseline system
was able to learn the required amount of morpho-
logical information from the text itself. Improve-
ments were also obtained for the En→Cz direc-
tion, although not as much as in German. This
could be due to data sparsity: Czech is much richer
in morphology,7 and the available TED En↔Cz
data was 40% less than the En↔De data.

Joint-data vs. Multi-task Learning

Both Joint-data learning and Multi-task learning
improved overall translation performance. In the
case of En→De, the performance of both ap-
proaches is very similar. However, each has its
own pros and cons. While the joint-data learn-
ing method is a simple approach that allows to add
morphology and other linguistic information with-
out needing to change the architecture, the multi-
task learning approach is a more principled and

7The number of morphological tags in Czech are 368 ver-
sus 214 in German.



Figure 4: Multi-task learning: Translation vs. Morphological Tagging weight for En→De model

powerful way of integrating the same information
into the decoder. Having separate objective func-
tions in multi-task learning also allows us to ad-
just the balance between the two tasks, which can
be handy if the morphological information quality
is not very high. On the flip side, this additional
explicit weight adjustment can also be viewed as a
potential constraint that is not present in the joint-
data learning approach.

Multi-task Weight Hyper-Parameter

As discussed, the multi-task learning approach has
an additional weight hyper-parameter λ that ad-
justs the balance between word and tag prediction.
Figure 4 shows the result of varying λ from no
morphological information (λ = 0) to only mor-
phological information (λ = 1) on test-11 set.
The left y-axis presents the BLEU score and the
right y-axis presents the morphological accuracy.
The best morphological accuracy is achieved at
λ = 1 which does not correspond to best trans-
lation quality since at that point the model is only
minimizing the tag objective function. Similarly at
λ = 0, the model falls back to the baseline model
with a single objective function minimizing trans-
lation error. For all language pairs, we consistently
achieved the best BLEU score at λ = 0.2. The pa-
rameter was tuned on a separate held out develop-
ment set (test-11), and the results shown in Figure
3 are on blind test sets (test-12,13). Averages are
reported in the figure.

6 Related Work

The related work to this paper can be broken into
two groups:

Analysis Several approaches have been devised
to analyze MT models and the linguistic properties
that are learned during training. A common ap-
proach has been to use activations from a trained
model to train an external classifier to predict some
relevant information about the input. Köhn (2015)
and Qian et al. (2016b) analyzed linguistic infor-
mation learned in word embeddings, while Qian
et al. (2016a) went further and analyzed linguistic
properties in the hidden states of a recurrent neu-
ral network. Adi et al. (2016) looked at the overall
information learned in a sentence summary vector
generated by an RNN using a similar approach.
Our approach closely aligns with that of Shi et al.
(2016) and Belinkov et al. (2017a), where the acti-
vations from various layers in a trained NMT sys-
tem are used to predict linguistic properties.

Integrating Morphology Some work has also
been done in injecting morphological or more gen-
eral linguistic knowledge into an NMT system.
Sennrich and Haddow (2016) proposed a factored
model that incorporates linguistic features on the
source side as additional factors. An embedding
is learned for each factor, just like a source word,
and then the word and factor embeddings are com-
bined before being passed on to the encoder. Aha-
roni and Goldberg (2017) proposed a method to
predict the target sentence along with its syntac-
tic tree. They linearize the tree in order to use
the existing sequence-to-sequence model. Nade-
jde et al. (2017) also evaluated several methods
of incorporating syntactic knowledge on both the
source and target. While they used factors on the
source side, their best method for the target side
was to linearize the information and interleave it
between the target words. Garcı́a-Martı́nez et al.



(2016) used a neural MT model with multiple out-
puts, like in our case of Multi-task learning. Their
model predicts two properties at every step, the
lemma of the target word and its morphological
information. They then use an external tool to use
this information to generate the actual target word.
Dong et al. (2015) presented multi-task learning to
translate a language into multiple target languages,
and Luong et al. (2015) did experiments involving
several levels of source and target language infor-
mation. There have been previous efforts to in-
tegrate morphology into MT systems by learning
factored models (Koehn and Hoang, 2007; Durrani
et al., 2015) over POS and morphological tags.

7 Conclusion

In this paper we analyzed and investigated ways to
improve morphological learning in the NMT de-
coder. We carried a series of experiments to un-
derstand why the decoder learns considerably less
morphology than the encoder in the NMT archi-
tecture. We found that the decoder needs assis-
tance from the encoder and the attention mecha-
nism to generate correct target morphology. Ad-
ditionally we explored three ways to explicitly
inject morphology in the decoder: joint genera-
tion, joint-data learning, and multi-task learning.
We found multi-task learning to outperform the
other two methods. The simpler joint-data learn-
ing method also gave decent improvements. The
code for the experiments and the modified frame-
work is available at https://github.com/
fdalvi/seq2seq-attn-multitask.
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Arne Köhn. 2015. What’s in an Embedding? Analyz-
ing Word Embeddings through Multilingual Evalu-
ation. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Process-
ing, pages 2067–2073, Lisbon, Portugal. Associa-
tion for Computational Linguistics.

Minh-Thang Luong, Quoc V. Le, Ilya Sutskever,
Oriol Vinyals, and Lukasz Kaiser. 2015. Multi-
task sequence to sequence learning. CoRR,
abs/1511.06114.

Minh-Thang Luong, Preslav Nakov, and Min-Yen Kan.
2010. A Hybrid Morpheme-Word Representation
for Machine Translation of Morphologically Rich
Languages. In Proceedings of the 2010 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 148–157. Association for Computa-
tional Linguistics.

Maria Nadejde, Siva Reddy, Rico Sennrich, Tomasz
Dwojak, Marcin Junczys-Dowmunt, Philipp Koehn,
and Alexandra Birch. 2017. Syntax-aware neu-
ral machine translation using CCG. CoRR,
abs/1702.01147.

Peng Qian, Xipeng Qiu, and Xuanjing Huang. 2016a.
Analyzing Linguistic Knowledge in Sequential
Model of Sentence. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 826–835, Austin, Texas. Associa-
tion for Computational Linguistics.

Peng Qian, Xipeng Qiu, and Xuanjing Huang. 2016b.
Investigating Language Universal and Specific Prop-
erties in Word Embeddings. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1478–1488, Berlin, Germany. Association for Com-
putational Linguistics.

Adwait Ratnaparkhi. 1998. Maximum Entropy Models
for Natural Language Ambiguity Resolution. Ph.D.
thesis, University of Pennsylvania, Philadelphia, PA.

Hassan Sajjad, Kareem Darwish, and Yonatan Be-
linkov. 2013. Translating Dialectal Arabic to En-
glish. In Proceedings of the 51st Conference of the
Association for Computational Linguistics (ACL).

Helmut Schmid. 1994. Part-of-Speech Tagging with
Neural Networks. In Proceedings of the 15th Inter-
national Conference on Computational Linguistics
(Coling 1994), pages 172–176, Kyoto, Japan. Col-
ing 1994 Organizing Committee.

Helmut Schmid. 2000. LoPar: Design and Imple-
mentation. Bericht des Sonderforschungsbereiches
“Sprachtheoretische Grundlagen fr die Computerlin-
guistik” 149, Institute for Computational Linguis-
tics, University of Stuttgart.

Rico Sennrich and Barry Haddow. 2016. Linguistic
input features improve neural machine translation.
In Proceedings of the First Conference on Machine
Translation, pages 83–91, Berlin, Germany. Associ-
ation for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Controlling Politeness in Neural Machine
Translation via Side Constraints. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:

https://doi.org/10.18653/v1/P17-2012
https://doi.org/10.18653/v1/P17-2012
http://arxiv.org/abs/1609.04621
http://arxiv.org/abs/1609.04621
http://arxiv.org/abs/1611.04558
http://arxiv.org/abs/1611.04558
https://github.com/harvardnlp/seq2seq-attn
https://github.com/harvardnlp/seq2seq-attn
http://www.aclweb.org/anthology/D07-1091
http://www.aclweb.org/anthology/D07-1091
http://aclweb.org/anthology/D15-1246
http://aclweb.org/anthology/D15-1246
http://aclweb.org/anthology/D15-1246
http://arxiv.org/abs/1511.06114
http://arxiv.org/abs/1511.06114
http://aclweb.org/anthology/D10-1015
http://aclweb.org/anthology/D10-1015
http://aclweb.org/anthology/D10-1015
http://arxiv.org/abs/1702.01147
http://arxiv.org/abs/1702.01147
https://aclweb.org/anthology/D16-1079
https://aclweb.org/anthology/D16-1079
http://www.aclweb.org/anthology/P16-1140
http://www.aclweb.org/anthology/P16-1140
http://www.aclweb.org/anthology/W16-2209
http://www.aclweb.org/anthology/W16-2209


Human Language Technologies, San Diego, Califor-
nia.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural Machine Translation of Rare Words
with Subword Units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Xing Shi, Inkit Padhi, and Kevin Knight. 2016. Does
String-Based Neural MT Learn Source Syntax? In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages
1526–1534, Austin, Texas. Association for Compu-
tational Linguistics.

Antonio Toral and Vı́ctor M. Sánchez-Cartagena. 2017.
A Multifaceted Evaluation of Neural versus Phrase-
Based Machine Translation for 9 Language Direc-
tions. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Volume 1, Long Papers, pages
1063–1073, Valencia, Spain. Association for Com-
putational Linguistics.

http://www.aclweb.org/anthology/P16-1162
http://www.aclweb.org/anthology/P16-1162
https://aclweb.org/anthology/D16-1159
https://aclweb.org/anthology/D16-1159

