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Abstract

We present QCRI’s Arabic-to-English
speech translation system. It features
modern web technologies to capture live
audio, and broadcasts Arabic transcrip-
tions and English translations simultane-
ously. Our Kaldi-based ASR system uses
the Time Delay Neural Network architec-
ture, while our Machine Translation (MT)
system uses both phrase-based and neural
frameworks. Although our neural MT sys-
tem is slower than the phrase-based sys-
tem, it produces significantly better trans-
lations and is memory efficient.1

1 Introduction

We present our Arabic-to-English SLT system
consisting of three modules, the Web application,
Kaldi-based Speech Recognition culminated with
Phrase-based/Neural MT system. It is trained and
optimized for the translation of live talks and lec-
tures into English. We used a Time Delayed Neu-
ral Network (TDNN) for our speech recognition
system, which has a word error rate of 23%. For
our machine translation system, we deployed both
the traditional phrase-based Moses and the emerg-
ing Neural MT system. The trade-off between
efficiency and accuracy (BLEU) barred us from
picking only one final system. While the phrase-
based system was much faster (translating 24 to-
kens/second versus 9.5 tokens/second), it was also
roughly 5 BLEU points worse (28.6 versus 33.6)
compared to our Neural MT system. We there-
fore leave it up to the user to decide whether they
care more about translation quality or speed. The
real-time factor for the entire pipeline is 1.18 using
Phrase-based MT and 1.26 using Neural MT.

1The demo is available at https://st.qcri.org/
demos/livetranslation.

Figure 1: Speech translation system in action. The
Arabic transcriptions and English translations are
shown in real-time as they are decoded.

Our system is also robust to common English
code-switching, frequent acronyms, as well as di-
alectal speech. Both the Arabic transcriptions and
the English translations are presented as results to
the viewers. The system is built upon modern web
technologies, allowing it to run on any browser
that has implemented these technologies. Figure
1 presents a screen shot of the interface.

2 System Architecture

The QCRI live speech translation system is pri-
marily composed of three fairly independent mod-
ules: the web application, speech recognition, and
machine translation. Figure 2 shows the complete
work-flow of the system. It mainly involves the
following steps: 1) Send audio from a broadcast
instance to the ASR server; 2) Receive transcrip-
tion from the ASR server; 3) Send transcription
to MT server; 4) Receive translation from the MT
server; 5) Sync results with backend system and
6) Multiple watch instances sync results from the
backend. Steps 1-5 are constantly repeated as new
audio is received by the system through the broad-
cast page. Step 6 is also periodically repeated to
get the latest results on the watch page. Both the
speech recognition and machine translation mod-



Figure 2: Demo system overview

ules have a standard API that can be used to send
and receive information. The Web Application
connects with the API and runs independently of
the system used for transcription and translation.

2.1 Web application

The web application has two major components;
the frontend and the backend. The frontend is cre-
ated using the React Javascript framework to han-
dle the dynamic User Interface (UI) changes such
as transcription and translation updates. The back-
end is built using NodeJS and MongoDB to han-
dle sessions, data associated with these sessions
and authentication. The frontend presents the user
with three pages; the landing page, the watch page
and the broadcast page. The landing page allows
the user to either create a new session or work
with an existing one. The watch page regularly
syncs with the backend to get the latest partial or
final transcriptions and translations. The broadcast
page is meant for the primary speaker. This page
is responsible for recording the audio data and col-
lecting the transcriptions and translations from the
ASR and MT systems respectively. Both partial
transcriptions and translations are also presented
to the speaker as they are being decoded. To avoid
very frequent and abrupt changes, the rate of up-
date of partial translations was configured based
on a MIN NEW WORDS parameter, which defines
the minimum number of new words required in
the partial transcription to trigger the translation
service. Both the partial and the final results are
also synced to the backend as they are made avail-
able, so that the viewers on the watch page can
experience the live translation.

2.2 Speech transcription

We use the Speech-to-text transcription system
that was built as part of QCRI’s submission to
the 2016 Arabic Multi-Dialect Broadcast Media
Recognition (MGB) Challenge. Key features of
the transcription system are given below:

Data: The training data consisted of 1200
hours of transcribed broadcast speech data col-
lected from Aljazeera news channel. In addition
we had 10 hours of development data (Ali et al.,
2016). We used data augmentation techniques
such as Speed and Volume perturbation which in-
creased the size of the training data to three times
the original size (Ko et al., 2015).

Speech Lexicon: We used a Grapheme based
lexicon (Killer and Schultz, 2003) of size 900k.
The lexicon is constructed using the words that oc-
cur more than twice in the training transcripts.

Speech Features: Features used to train
all the acoustic models are 40 dimensional hi-
resolution Mel Frequency Cepstral Coefficients
(MFCC hires), extracted for each speech frame,
concatenated with 100 dimensional i-Vectors per
speaker to facilitate speaker adaptation (Saon
et al., 2013).

Acoustic Models: We experimented with three
acoustic models; Time Delayed Neural Networks
(TDNNs) (Peddinti et al., 2015), Long Short-Term
Memory Recurrent Neural Networks (LSTM) and
Bi-directional LSTM (Sak et al., 2014). Perfor-
mance of the BLSTM acoustic model in terms of
Word Error Rate is better than the TDNN, but
TDNN has a much better real-time factor while
decoding. Hence, for the purpose of the speech
translation system, we use the TDNN acoustic
model. The TDNN model consists of 5 hidden lay-
ers, each layer containing 1024 hidden units and is
trained using Lattice Free Maximum Mutual Infor-
mation (LF-MMI) modeling framework in Kaldi
(Povey et al., 2016). Word Error Rate comparison
of different acoustic models can be seen in Table
1. For further details, see Khurana and Ali, 2016).

Language Model: We built a Kneser Ney
smoothed trigram language model. The vocab size
is restricted to the 100k most frequent words to
improve the decoding speed and the real-time fac-
tor of the system. The choice of using a trigram
model instead of an RNN as in our offline systems
was essential in keeping the decoding speed at a
reasonable value.

Decoder Parameters: Beam size for the de-



Model %WER

TDNN 23.0
LSTM 20.9
BLSTM 19.3

Table 1: Recognition results for the LF-MMI
trained recognition systems. LM used for decod-
ing is tri-gram. Data augmentation is used before
training

coder was tuned to give the best real-time factor
with a reasonable drop in accuracy. The final value
was selected to be 9.0.

2.3 Machine translation

The MT component is served by an API that con-
nects to several translation systems and allows the
user to seamlessly switch between them. We had
four systems to choose from for our demo, two
of which were Phrase-based systems, and the two
were Neural MT systems trained using Nematus
(Sennrich et al., 2016).

PB-Best: This is a competition-grade phrase-
based system, also used for our participation at
the IWSLT’16 campaign (Durrani et al., 2016). It
was trained using all the freely available Arabic-
English data with state-of-the-art features such as
a large language model, lexical reordering, inter-
polated OSM (Durrani et al., 2013) and NNJM
features (Devlin et al., 2014).

PB-Pruned: The PB-best system is not suitable
for real time translation and has high memory re-
quirements. To increase the efficiency, we dropped
the OSM and NNJM features, heavily pruned the
language model and used MML-filtering to select
a subset of training data. The resulting system was
trained on 1.2 M sentences, 10 times less the orig-
inal data.

NMT-GPU: This is our best system2 that we
submitted to the IWSLT’16 campaign (Durrani
et al., 2016). The advantage of Neural models is
that their size does not scale linearly with the data,
and hence we were able to train using all available
data without sacrificing translation speed. This
model runs on the GPU.

NMT-CPU: This is the same model as 3, but
runs on the CPU. We use the AmuNMT (Junczys-

2without performing ensembling

Dowmunt et al., 2016) decoder to use our neural
models on the CPU. Because of computation con-
straints, we reduced the beam size from 12 to 5
with a minimal loss of 0.1 BLEU points.

The primary factors in our final decision were
3-fold; overall quality, translation time and com-
putational constraints. The translation time has to
be small for a live translation system. The perfor-
mance of the four systems on the official IWSLT
test-sets is shown in Figure 3.

Figure 3: Performance and Translation speed of
various MT systems

We also computed the translation speed of each
of the systems.3 The results shown in Figure 3
depict the significant time gain we achieved using
the pruned phrase based system. However, with a
5 BLEU point difference in translation quality, we
decided to compromise and use the slower NMT-
CPU in our final demo. We also allow the user to
switch to the phrase-based system, if translation
speed is more important. We did not use NMT-
GPU since it is very costly to put into production
with its requirement for a dedicated GPU card.

Finally, we added a customized dictionary and
translated unknown words by transliterating them
in a post-decoding step (Durrani et al., 2014).

2.4 Combining Speech recognition and
Machine translation

To evaluate our complete pipeline, we prepared
three in-house test sets. The first set was col-
lected from an in-house promotional video, while
the other two sets were collected in a quiet office
environment.

3PB-Pruned and NMT-CPU were run using a sin-
gle CPU thread on our standard demo machine using
a Intel(R) Xeon(R) E5-2660 @ 2.20GHz proces-
sor. PB-Best was run on another machine using
a Intel(R) Xeon(R) E5-2650 @ 2.00GHz proces-
sor due to memory constraints. Finally, NMT-GPU was run
using an NVidia GeForce GTX TITAN X GPU card.



We analyzed the real time performance of the
entire pipeline, include the lag induced by trans-
lation after the transcription is complete. With
an average real-time factor of 1.1 for the speech
recognition, our system keeps up with normal
speech without any significant lag. The distribu-
tion of the real time factor speech recognition and
translation for the in-house test sets is shown in
Figure 4.

Figure 4: Real-time analysis for all audio seg-
ments in our in-house test sets

3 Conclusion

This paper presents QCRI live speech translation
system for real world settings such as lectures
and talks. Currently, the system works very well
for Arabic including frequent dialectal words, and
also supports code-switching for most common
acronyms and English words. Our future aim is to
improve the system in several ways; by having a
tighter integration between the speech recognition
and translation components, incorporating more
dialectal speech recognition and translation, and
by improving punctuation recovery of the speech
recognition system which will help machine trans-
lation to produce better translation quality.
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