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Abstract

Statistical Machine Translation took a stride from word-based models towards
more advanced models that take contextual information into account. Phrase-
based and N-gram-based models are two instances of such frameworks. While
the two models have some common properties, they are substantially different
in terms of lexical generation, reordering models and search mechanisms. This
dissertation aims at combining the benefits and to remedy the flaws of these
two frameworks.

Phrase-based systems employ a simple and effective machinery by learning
larger chunks of translation called phrases. Memorizing larger units enables
the phrase-based model to learn local dependencies such as short reorderings,
idioms, insertions and deletions, etc. Phrase-based MT, however, has the fol-
lowing drawbacks:

• Dependencies across phrases are not directly represented in the transla-
tion model due to a phrasal independence assumption

• The reordering model is not designed to handle long range reorderings

• Search and modeling problems require the use of a hard reordering limit

• It has the spurious phrasal segmentation problem that causes the model
to learn and hypothesize different equivalent segmentations with different
model scores

• Source word deletion and target word insertion outside phrases is not
allowed during decoding
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• Discontinuous phrases cannot be represented and used

N-gram-based models are Markov models over sequences of tuples. Tuples are
minimal translation units composed of source and target cepts. Modeling with
minimal translation units helps address some of the issues in Phrase-based MT.
Firstly, no phrasal independence assumption is made. The model has access to
both source and target context outside of phrases. Secondly the model learns
a unique derivation of a bilingual sentence given its alignments, thus avoiding
the spurious segmentation problem. The N-gram model, however, gives up the
ability to memorize dependencies such as short reorderings that are local to
the phrases. N-gram-based MT has the following drawbacks:

• Only the pre-calculated orderings are hypothesized during decoding

• The N-gram model can not memorize and use lexical triggers

• Long distance reorderings can not be performed due to data sparsity

• Using tuples presents a more difficult search problem than that in phrase-
based SMT

• Unaligned target words can not be handled

A drawback that is common to both the frameworks and which is often used
to motivate Syntax-based machine translation is that lexical information and
reordering are decoupled and modeled separately as unrelated phenomena.

In this dissertation, we present a novel machine translation model based on
a joint probability model, which represents the translation process as a lin-
ear sequence of operations. Our model like the N-gram model uses minimal
translation units, but has the ability to memorize lexical reordering triggers
like the phrase-based model. Unlike the N-gram model, our operation sequence
includes not only translation but also reordering operations. The strong cou-
pling of reordering and translation into a single generative story provides a
mechanism to better restrict the position to which a word or phrase can be
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moved, and is able to handle short and long distance reorderings effectively.
This thesis combines the benefits of phrase-based MT and N-gram-based MT
and remedies their problems by making the following contributions:

• We proposed a model that handles both local and long distance depen-
dencies uniformly and effectively

• Like the N-gram model and unlike the phrase-based model, our model
takes both source and target information into account and avoids phrasal
independence assumption

• The model like the N-gram model learns a unique derivation from a
bilingual sentence and avoids the spurious phrasal segmentation problem

• Like the phrase-based and unlike the N-gram model, our model exhibits
the ability to memorize phrases

• In comparison to the N-gram-based model, our model performs search
on all possible reorderings and has the ability to learn lexical triggers
and apply them to unseen contexts

• During decoding, we are able to remove the hard reordering constraint
which is necessary in the phrase-based systems

• We combine N-gram-based modeling with phrase-based decoding, and
obtain the benefits of both approaches

• Our model has a mechanism to handle discontinuous and unaligned
source-side units

We conducted experiments on German-to-English, French-to-English and Spanish-
to-English translation using five standard translation task. We compared our
model with two state-of-the-art phrase-based systems (Moses and Phrasal)
and a state-of-the-art N-gram-based system (Ncode) and showed statistically
significant improvements over all the baseline systems.
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1 Introduction

1.1 Machine Translation Problem – A Brief
History

Machine translation has been one of the oldest studied problems in the area of
artificial intelligence. Given a foreign language sentence, the task is to automat-
ically translate it into English (or any other language). The efforts in machine
translation started with the motivation of code breaking during World War
II. Because of this, machine translation is historically viewed as a decipher-
ment problem. Warren Weaver, one of the pioneering researchers in machine
translation wrote in 1947:

“When I look at an article in Russian, I say: This is really written in English,
but it has been coded in some strange symbols. I will now proceed to decode”
(Weaver, 1955)

The lack of computational resources required to model complex linguistic
phenomena lead to the publication of the ALPAC report that stopped the
funding for machine translation in the US. The efforts to build an automatic
machine translation system were subsequently stalled. However, the improve-
ment in computing capacity and the growing demands for translations in the
multilingual societies, re-established the field in the late 70’s. Different ap-
proaches to solve the problem have been taken ever since. Below is a very brief
description for some of these.
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Rule-based MT: The focus of rule-based machine translation (Hutchins and
Somers, 1992; Arnold et al., 1994) is to develop a set of linguistic rules to
explain the translation from source to target. This approach requires a lot of
human effort and linguistic resources that are expensive to come by.

Empirical Approaches to MT: Over the last two decades, Machine Trans-
lation has taken a stride from rule-based towards corpus-based approaches.
The shift was based on two arguments i) human resources are expensive and
the effort to produce linguistic rules has to be repeated for each new language
pair, ii) natural language is too complex to be captured with a set of rules.
The idea of the corpus-based approach was to automatically learn these rules
from a large corpus of translated data. With the idea of learning from data,
two popular frameworks namely example-based machine translation (EBMT)
and statistical machine translation (SMT) were born.

Example-based MT: The EBMT (Brown, 1996) framework is driven by the
idea of translation by analogy. The training data is extracted from bilingual
parallel data that contains sentences that are translation of each other. During
test, the idea is to map the input sentence to the previously seen examples in
the training data and make appropriate changes to their stored translation to
produce the translation of the test sentence.

Statistical MT: Statistical Machine Translation like EBMT is trained on a
bilingual training corpus. However, SMT learns statistical models from the
parallel and monolingual data and finds during decoding the most probable
translation according to the statistical model. Last two decades have witnessed
exciting amount of research in this area. Initial efforts were based on word-to-
word translation and later on followed by a transition towards using phrases
as unit of translation. Recent systems have incorporated linguistic information
such as morphology and syntax inside of statistical machine translation.
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Hybrid MT: More recently people have also started to combine the advan-
tages of rule-based and corpus-based MT into hybrid systems. The success of
statistical machine translation is based on abundantly available data. However,
rule-based systems are better at handling exceptions, the statistics of which are
sparsely available in the data. Rule-based system also translate out-of-domain
data better than statistical machine translation.

1.2 Motivation: Problems in Statistical Machine
Translation

The aim of this dissertation is to improve the state-of-the-art in different as-
pects of the statistical machine translation. Our focus is on the SMT systems
that are based on string-to-string translation. However, the ideas presented in
this research are generic and can be extended to other SMT frameworks. We
studied the drawbacks in the machinery of the two popular frameworks in SMT
namely the phrase-based model and the N-gram model and proposed a model
that combines the benefits of the two and rectifies their drawbacks. In this
section we will briefly discuss the problems in these frameworks to motivate
the work done in this dissertation.

1.2.1 Reordering

The most difficult problem in statistical machine translation is the modeling of
syntactic differences between the source and target language. Some language
pairs such as Hindi-Urdu, Thai-Lao have monotonic word order with respect to
each other; translation of these is therefore easier. On the contrary translation
between German and English or Japanese and English is more difficult because
of their radically different syntactic structures. This makes the translation task
in these language pairs more difficult both in terms of modeling and computa-
tion. Firstly the system must learn complex reordering patterns and syntactic
differences between the languages and build a model that is able to reward
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good word orders and penalize the bad ones. Secondly during translation we
have to construct an output sentence. Trying out all possible word orders is
computationally feasible and makes the search problem hard.
Both Phrase-based and N-gram models are poor at the long distance reorder-

ings. The main reason for this drawback is that lexical generation and reorder-
ing are decoupled and modeled separately. To remove this drawback, recent
research has tried to incorporate syntactic information along with lexical gen-
eration, thus giving birth to the Syntax-based SMT. The phrase-based system
however, remains state-of-the-art translation mechanism for many language
pairs. The following paragraphs discuss the weaknesses in the Phrase-based
and N-gram-based reordering.

Phrase-based MT: The phrase-based model is able to model intra-phrase re-
orderings well; however, non-local reorderings are not handled directly through
the translation model. The lexicalized reordering model plainly learns how a
phrase-pair was ordered with respect to its previous phrase without taking
into account the dependencies with previously translated source and target
words. The reordering model relies heavily on the language model to get the
word order right. However, the language model can not justify long distance
reorderings because of the dis-preference of the translation model for non-local
movement. This problem is magnified during decoding when the reordering
model and other feature components in the phrase-based system can not dif-
ferentiate between good and bad hypotheses, resulting in both modeling and
search errors. A hard reordering limit of 6 words has to be applied in order to
reduce the search space. This consequently means that a movement beyond a
window of 6 words is never hypothesized.

N-gram-based MT: The reordering model in the N-gram-based system also
has several drawbacks. i) The reordering model is based on POS-based rewrite
rules, and therefore requires additional linguistic resource i.e. POS-tagged data
and a POS-tagger apart from the parallel data to build an N-gram-based SMT
system. ii) Like phrase-based MT it also applies a hard-reordering constraint
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in form of a restriction on the length of the rewrite rule. A rule longer than 7
POS-tags is filtered out during training due to data sparsity. iii) POS-based
rules do not generalize well to the unseen patterns unless the test sentence
occurs with the exact sequence of POS-tags as observed during training. iv)
Another drawback of this reordering approach is that search is only performed
on a small number of reorderings that are pre-calculated on the source side
independently of the target side. Often, the evidence for the correct ordering
is provided by the target-side language model (LM). In the N-gram approach,
the LM only plays a role in selecting between the pre-calculated orderings.

Goal: In this dissertation we aim at improving the modeling of long dis-
tance reordering by representing local and non-local reoderings in an identical
manner. Our aim is to couple translation and reordering such that translation
decisions influence reordering and vice versa. Our secondary objective is to
remove the hard reordering limit during decoding and search for all possible
permutations.

1.2.2 Modeling of Translation Units

One main difference between Phrase-based and N-gram based MT is the mod-
eling of translation units. Phrase-based systems employ a simple and effective
machinery by learning larger chunks of translation called phrases1. Memorizing
larger units enables the phrase-based model to learn local dependencies such
as short reorderings, idioms, insertions and deletions, etc. The model however,
has the following drawbacks. Firstly it makes an independence assumption
over phrases, according to which phrases are translated independently of each
other, thus ignoring the contextual information outside of the phrasal bound-
ary. Secondly the model is unaware of the actual phrasal segmentation of a
sentence during training. It therefore learns all possible ways of segmenting

1Phrases in PBSMT are a sequence of words, which is not necessarily a linguistic con-
stituent. Phrases are built by combining minimal translation units and ordering infor-
mation.
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a bilingual sentence. Different segmentations of a bilingual sentence result in
different probability scores for the translation and reordering models, causing
spurious ambiguity in the model.
The unit of translation in N-gramMT is the tuple which is a minimal transla-

tion unit composed of bilingual source and target cepts. The N-gram modeling
framework assumes that source and target cepts are generated monotonically.
Because of this assumption, the source-side has to be linearized. By linearizing
the source, N-gram-based SMT throws away useful information about how a
particular word is translated with respect to the previous word. This informa-
tion is rather stored in form of rewrite rules. However, because POS tags are
used instead of word forms, a rewrite rule might fail to retrieve the reordering
observed during training.

Goal: In this dissertation, we aim to use minimal translation units (just like
the N-gram model). Using minimal units results in a unique segmentation of
the bilingual sentence pair given its alignments. The model does not make
any phrasal independence assumption and generates a tuple by looking at the
context. This would allow us to model all the dependencies through a single
derivation, thus addressing the problems in PBSMT.
We aim to rectify the drawbacks of the N-gram model by coupling reordering

information with the tuple-based model, thus removing the need to linearize
the source and to use POS-based rewrite rules. Although we use minimal trans-
lation units, the goal is to propose a model that has the ability to memorize
and use lexical triggers like the Phrase-based SMT. We will therefore try to
combine the benefits of both approaches and rectify their drawbacks.

1.2.3 Search

The goals defined in the last two sections makes the search problem more diffi-
cult than in both Phrase-based and N-gram-based SMT. Using minimal trans-
lation units, makes the search much more difficult because of the i) poor trans-
lation selection, ii) inaccurate future cost estimates and iii) incorrect pruning
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of correct hypotheses. This problem is somewhat reduced in the N-gram-based
SMT, because search is performed only on the pre-calculated orderings. Cou-
pling reordering and search allows the N-gram model to arrange hypotheses
such that each hypothesis covers the same foreign words. This removes the
need of future-cost and also gives the correct hypotheses more chance to sur-
vive pruning. We, however, aim to built search graph dynamically and search
through all possible permutations of a foreign sentence without any reorder-
ing constraints. This means that hypotheses can no longer be arranged as in
the N-gram-based decoding. The problem of inaccurate future cost estimates
resurfaces resulting in more search errors.
Phrase-based search on the other hand i) has access to uncommon transla-

tions, ii) does not require higher beam sizes, iii) has more accurate future cost
estimates because of the availability of phrase-internal language model context
before search is started. Phrase-based decoding however suffers from spurious
phrasal segmentation problem. Multiple segmentations of a bilingual sentence
pair are learned during training. This kind of ambiguity in the model subse-
quently results in the presence of many different equivalent segmentations in
the search space.

Goal: In this dissertation, we will study the impact of combining phrase-
based search with a model based on minimal translation units. We also study
whether the information available in phrases can be indirectly used in the
tuple-based search. Because there is no segmentation ambiguity in the model,
it is easy to avoid spurious phrasal segmentation problem during decoding in
our system.

1.2.4 Joint Probability Model

Most previous research has concluded that conditional probability models work
better than their counterparts based on the joint probability model. There
is a widely held belief that modeling of source-side dependencies do not help
because of the data sparsity. The translation model in phrase-based MT makes
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a context independence assumption. The dependencies on the source-side are
only handled inside of phrases. Target-side dependencies are handled through
a monolingual language model.

Goal: One of the aims of this research was to study joint-modeling. Joint
models are better than conditional model in theory because they take both
source and target context into account when translating. At this point, we
would like to mention a piece of work, our Hindi-to-Urdu machine translation
system (Durrani et al., 2010; Sajjad et al., 2011), that was carried out earlier2,
and was one of the motivations of this research. In this work we presented a
novel approach to integrate transliteration into Hindi-to-Urdu statistical ma-
chine translation. We proposed two probabilistic models, based on conditional
and joint probability formulations. In our results we found that the joint prob-
ability model performs as well as the conditional probability model.
The translation model p(hn1 |un1 ) is approximated with a context-independent

model:

p(hn1 |un1 ) =
n∏
i=1

p(hi|ui) =
n∏
i=1

p(hi, ui)
p(ui)

(1.1)

The joint probability p(hi, ui) of a Hindi and an Urdu word is estimated by
interpolating a word-based model and a character-based model.

p(hi, ui) = λpw(hi, ui) + (1− λ)pc(hi, ui) (1.2)

The model looks for the most probable Urdu token sequence un1 for a given
Hindi token sequence hn1 . We assume that each Hindi token is mapped to one
or more Urdu words and that there is no reordering. The model was built on a
very small amount of parallel data containing roughly 7000 training sentences.
The character-based transliteration probability we used was also based on a

joint probability model (Sajjad et al., 2011):

2but has been left out of this dissertation to keep the writing coherent
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pc(h, u) =
∑

an
1∈align(h,u)

p(an1 )

=
∑

an
1∈align(h,u)

n∏
i=1

p(ai|ai−1
i−k) (1.3)

where ai is a pair consisting of the i-th Hindi character hi and the sequence of
0 or more Urdu characters that it is aligned with.
We used a context window of four preceding pairs (5-gram model) in the

transliteration model but a context-independence assumption was made in the
translation model due to data sparsity. A question that was raised from this
work was whether using context in the translation model and modifying the
Equation 1.2 to Equation 1.4 would be helpful. Seeking the answer for this
question we followed this line of research to pursue joint modeling.

p(hi, ui) = λpw(hi, ui|hi−m+1, ui−m+1 . . . hi−1, ui−1) + (1− λ)pc(hi, ui) (1.4)

1.2.5 Secondary Goals

We also aimed at the modeling of discontinuous and unaligned translation
units. Previous research has shown that modeling these phenomena can help
improve the translation quality. One of the aims of this dissertation is to study
these artifacts of translation.

1.3 Thesis Organization
This thesis is organized into six chapters. The introductory chapter has been
spent on giving a brief overview on machine translation in terms of history
and different approaches. We stated some of the problems in phrase-based and
N-gram SMT that we aim to solve. The next two chapters are devoted to the lit-
erature review of Phrase-based and N-gram based MT respectively. We discuss
both the frameworks in terms of translation modeling, reordering and decoding.
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Followed by which we discuss the drawbacks of these techniques. Chapter 3 also
gives a comparison of phrase-based and N-gram-based models. In Chapter 4 we
present our model discussing different aspects. We present the new reordering
framework showing how it can handle both short and long-range reorderings,
as well as recursive reorderings with complex patterns. We discuss how our op-
eration sequence model is able to handle discontinuous and unaligned source
word cepts. We also present different features that we use to help the transla-
tion and reordering decisions taken by the decoder during search. Finally we
present our decoding framework. The end of this chapter gives a comprehensive
evaluation of our model against the state-of-the-art phrase-based (Moses and
Phrasal) and N-gram-based (Ncode) systems on 5 standard translation task
of translating German-to-English, Spanish-to-English and French-to-English.
In our results we noted that using minimal translation units during decod-
ing makes the search problem difficult due to poor future-cost estimate, poor
translation coverage and pruning of the correct hypotheses. In Chapter 5 we
extented our system to combine phrase-based decoding with the operation se-
quence model to address these problems. Chapter 6 concludes this thesis by
presenting the contributions. It also gives discusses future lines of research
extending the work carried out.
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2 Phrase-based Statistical
Machine Translation

In this chapter we give a comprehensive overview of the state-of-the art phrase-
based SMT in terms of translation modeling, reordering and decoding. We dis-
cuss the benefits and drawbacks of phrase-based SMT (PBSMT). The chapter
begins by summarizing word-based models developed by IBM in the last decade
of 20th century. The drawbacks of word-based translation motivate phrase-
based models. Instead of using words, phrase-based models make a shift to-
wards using phrases as a unit of translation. We discuss the main stream phrase
translation model (used in Moses), which is built on top of word alignments
and uses the noisy channel model. Alongside we also discuss phrase-based sys-
tems that are based on joint models. The chapter also discusses the problem
of reordering in machine translation. Both distance-based and lexicalized re-
ordering models are discussed. In the end we talk about the major drawbacks
of phrase-based SMT.

2.1 Word-based Models
With the increasing availability of the digital text due to rapid proliferation
of Internet, machine translation made a transition from rule-based methods to
example-based and statistical machine translation (SMT). The first SMT mod-
els built on parallel data were based on word-to-word translation. Word-based
models were first proposed by the IBM Candide project (Brown et al., 1990,
1993). Word-based models were used both for word alignments and transla-
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tion. Although the models are now obsolete for translation, they are still used
for the word alignment task and underpin some of the very key concepts such
as generative models, expectation maximization and the noisy channel frame-
work that are still used today. Before discussing the IBM models let us first
discuss the noisy channel framework and generative models to lay important
foundations which will be referred to through the course of this thesis.

2.1.1 Noisy Channel Model

The noisy channel model (NCM) is a very useful framework that has been
successfully applied to many areas of problems inside of NLP (such as spell-
checking, automatic speech recognition, machine translation etc.) as well as
outside of NLP (such as data compression, OCR error correction etc). The
theory roots back to the problem in information theory. Say a signal “e” is
emitted by a transmitter. It goes through a channel and gets corrupted to
noise “f” before getting received at the other end. The problem in information
systems is to retrieve the original signal “e” given the noise “f”. In the NCM
framework this problem can be factored into two models. One of these models
describes the common patterns of how “e” gets scrambled into “f” and the
second model defines how a normal signal “e” usually looks like. This formu-
lation has been borrowed to solve problems in many areas including machine
translation.
The NCM metaphor in machine translation can be applied as follows. When

we see a foreign language “f”, we say that the person actually wanted to write
an English sentence “e” but somehow ended up writing a foreign language sen-
tence “f” on the paper. The problem is to decode the English sentence given the
foreign sentence. In terms of the original problem the English sentence “e” is
the signal emitted by the transmitter that gets scrambled and turns into noise
(foreign sentence) “f”. To recover the most likely English translation we try to
model two phenomenon. 1) If the sentence is grammatical – p(e) : the proba-
bility of the English sentence being generated. and 2) how an English sentence
turns into a foreign language (say German) sentence “f” – p(f |e) Translation
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Model (Brown et al., 1990). In other words 1) models fluency (grammatical
correctness and word choices) and 2) models adequacy (the output conveys
the same meaning as the input sentence). Combining a language model and a
translation model in this manner is called a Noisy Channel Model.
Having these two sub-models in hand the remaining problem is to search for

an English string that is fluent and adequately represents the foreign sentence.
We can use Bayes’ Rule to get the most likely English sentence given a German
sentence p(e|f) as:

p(e|f) = p(e)p(f |e)
p(f)

We are interested in the English sentence e that maximizes Bayes’ rule equa-
tion:

argmax
e

p(e|f) = argmax
e

p(e)p(f |e)
p(f)

= argmax
e

p(e)p(f |e)

The p(f) term in the denominator can be dropped because it remains con-
stant across different English sentences.

2.1.2 Generative Models

In the previous section we defined the problem of machine translation. Given
a foreign sentence “f” we want to find its translation “e”. We then split the
problem of finding argmaxe p(e|f) into two components, namely Language
Model and Translation Model. The reason why we do this, is that, it is
much harder to estimate p(e|f) directly. Therefore we decompose the problem
using Bayes’ Rule. The translation model assigns a high probability to an
English sentence “e” if words in “f” are generally translations of words in
“e”. For example for a German sentence: “meistens ist die sache mit einer
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entschuldigung abgetan”, the translation model gives a high probability to both
the English sentences “mostly the matter ends with an apology” and “mostly
the apology with an matter ends” but low probability to “the houses were
put on fire”. On the other hand the job of the language model is to give high
probability to “mostly the matter ends with an apology” and low probability
to “mostly the apology with an matter ends”. True, that the language model
will also favor “the houses were put on fire”, but the translation model dis-
prefers it because it is not a good translation. The overall decoding problem
is to search for an English sentence that maximizes the product of the two
probabilities. As can be seen, it is very convenient to decompose the problem
into two smaller problems and then combine them to solve the bigger problem.
Although we have split the problem into the two sub problems of estimat-

ing p(e) and p(e|f) note that we can still not model these distributions for
full sentences because most sentences appear only once or twice even in large
corpora. Therefore p(e) and p(e|f) would give very high probability to the sen-
tence “mostly the matter ends with an apology” but might assign a probability
of zero to the sentence “mostly the matter ends with an extenuation” because
the sentence was never observed during training. In order to overcome this
problem we split these processes further into smaller steps of translating one
or more words at a time instead of whole sentence and scoring these smaller
steps through the probability models. This is helpful because we might have
all or at least most of the English and foreign language words in our data but
it is impossible to have all possible English and foreign sentences because there
can be infinitely many.
One commonly used language model is a tri-gram model which considers a

window of the last two words only, when generating the next word. According
to this model the probability of the sentence “it is very cold” would be:

p(it| < s >)∗p(is| < s > it)∗p(very|it is)∗p(cold|is very)∗p(< e > |very cold)

This method of breaking up the process of generating data into smaller steps
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and modeling the smaller steps with probability distributions, and combining
the steps in a coherent story – is calledGenerative Modeling (Koehn, 2010).

2.1.3 Summary of the IBM Word-based Models

In this section we will summarize the IBM models that are based on the word-
based translation. We will give generative story of each of them followed by its
drawbacks. The generative story can be viewed as a string rewriting process
that helps us to learn model parameters. Although the problem is to translate
from foreign language to English the generative story explains how an English
string can be rewritten or scrambled (in terms of NCM metaphor) to a foreign
sentence. At the end of this section we will discuss the overall drawbacks of
word-based translation models and motivate phrase-based models that are still
the state-of-the-art for many language pairs.

Model 1

Model 1 is a simple generative model. Given a German string F (we will use
German as foreign language for the rest of the thesis), having length l, Model
1 generates a sentence E with the following stochastic process:

• Model 1 choose a string length m for the English sentence E

• For each English position i, a German word fj at position j is selected and
an English word ei is generated with a probability through a translation
probability p(ei|fj).

Model 2

The drawback of Model 1 is that it does not prefer good word order over a bad
permutation of words in an output string. The translation output “apology
the ends mostly with matter an” is as much probable as “mostly the matter
ends with an apology” according to Model 1. A better translation model needs
to penalize bad reorderings through some parameter. Model 2 adds an explicit
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alignment step to the generative story of the Model 1 to penalize unlikely
permutations.
Model 2 has a two step generative process. The first step models how English

word can be mapped to German words (same as Model 1) and the second step
is the alignment step which models reordering. The alignment step models
that ith word in English sentence is mapped to the jth word in the German
sentence through a probability distribution a(j | i k l). Which means that ith

word in the English sentence is mapped to the jth word in the German sentence.
The parameters k and l are the lengths of English and German sentences
respectively.

Model 3

Model 1 and Model 2 do not explicitly model the generation of many-to-one
mappings from English to German. There can be multiple English words that
map to a single German word for example “inflation rate” mapping to “infla-
tionsrate”. Modeling of this phenomenon is very useful in translation of agglu-
tinative languages such as German, Turkish and Finnish, that tend to create
very long words with derivational morphemes.
Model 3 removes this drawback by adding a fertility model p(n|fj) to the

generative story of Model 2. This model assigns fertility (n) to each German
word i.e. the number of English words generated by the German word (fj) .
The German words that are mapped to, by one English word get a fertility
n = 1. Those that generate two English words get a fertility of n = 2 and so
on. A zero fertility means that this German word is dropped i.e. it does not
have a corresponding word on the English side.

Model 4

The drawback of Model 2 and Model 3 is their weak reordering model which
is based on the absolute positions of words in German and English sentences.
The parameterization is weak, and can not distinguish between good and bad
alignments. Secondly learning absolute indexes irrespective of lexicalized word
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Figure 2.1: Generative Story – Model 3

forms is less helpful for generalizing over unseen test sentences. In order to
remedy this problem, Model 4 proposes a relative distortion model. Model 4
learns the placement of a word relative to the placement of the last translated
word.
The reordering model learned by Model 3 conditions movement only on

German and English indexes and length of sentences. Model 4 introduces
lexical forms in its distortion parameters by conditioning on current English
(ej) and previous German word (fi−1). See Figure 2.1, for example. When
placing “gehalten – kept”, the parameter learned by Model 3 is estimated as
p(5 | 4 8 7). This means that the 5th word in the German sentence maps to the
4th position in the English sentence. Model 4 learns d1(−3 | kept, prozent). The
relative distortion is −3 which suggests the backward movement of the English
word “kept” by jumping back 3 positions over the German words “under” ,
“two” and “percent”.
In order to overcome sparse estimates, word classes are used instead of lexi-

calized word forms. The parameters are then estimated as p(d | α(ej), β(fi−1)),
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where d is the relative distortion, α(ej) and β(fi−1) are the word class func-
tions. Several different methods have been proposed in literature to define word
class functions α(ej) and β(fi−1).

Model 5

One drawback of previous models is that they are deficient i.e. they assign
probability mass to some events that can not occur in practice. For example
we can pick an English word position i that has already been taken by another
English word and Model 4 will still assign it a positive probability. In other
words nothing prevents Model 4 from selecting the same target position j for
every German word to be translated.
Model 5 eliminates the problem of deficiency by proposing an additional pa-

rameter that prevents it from placing words in the occupied slots. This is done
by keeping track of the vacant positions. The movement is now conditioned on
two additional parameters vmax and v�i−1 such as:

d1(vj | α(ej), vmax, v�i−1)

where vmax defines the number of available slots in the English output at
that point of translation. vj defines the number of available slots for the interval
[1−j] and v�i−1 defines the available vacancies at the center of the previous cept
covered. The conditioning on β(fi−1), the word class of the previous German
word is removed due to the sparsity issues.

2.1.4 Drawbacks of Word-based Translation

In the previous sections we summarized the word-based IBM Models. Word-
based models, combined with symmetrization heuristics, show good perfor-
mance in the word alignment problem, they are, however, not used for trans-
lation task anymore. In this section we will enumerate their drawbacks which
help us to motivate phrase-based translation.
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1. Word-based models do not allow many-to-one or many-to-many align-
ments. The English words can not be aligned to more than one German
word. This restriction hinders the model to learn word correspondences
like “habe gemacht – made” which aligns two source words with one
target word. Many-to-one and many-to-many alignments turn out to be
critical when translating to agglutinative languages such as German or
Finnish. Word-based models fail to produce translation units such as
“chocolate ice cream – schokoladeneis” (when translating from English
to German).

2. Another major drawback of word-based models is their modeling of de-
pendencies. Translation decisions are not conditioned on the previous
translations or reorderings. Many words have different possible transla-
tions and various meanings in different contexts. For example the most
typical translation of the German word “zum” is the preposition “to” as
in “zum Bahnhof – to the train station”. But “zum” also translates to
the word “for” as in the phrase “zum beispiel – for example” and gets
deleted in phrase “zum mitnehmen – takeaway”.

3. The fertility model for generating multiple English words from a German
word often breaks due to independence assumption. In the above example
“zum” has fertilities one and zero respectively. Lets add another example
here in which “zum” translates to “to the” in the phrase “von einem Haus
zum anderen – from one house to the other”. In this case “zum” has a
fertility two. Word-based model will mostly prefer the translation “zum –
to” with a fertility p(1|zum) because this is the most frequent translation
and fertility for the word “zum”.

4. Word-based models have no ability to memorize idiomatic expressions
such as “in den sauren apfel beißen – bite the bullet” which it translates
as “the sour apple bite”.

5. The parameters learned by the reordering models do not generalize well
during decoding. For example Model 4 learns the reordering parame-
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ter d1(−3 | kept, prozent) according to which German word translates
to “kept”, and is placed in a position, 2 slots before the target position
for the word “prozent”. This can easily fail for a test sentence like “in-
flationsrate sollte zwischen 2 bis 6 prozent gehalten werden – inflation
rate should be kept between 2 to 6 percent”, which requires “kept” to
be placed 4 slots before the target position of the word “prozent”. In
a nutshell words can follow infinitely many permutations. A reordering
model based on absolute or relative word positions remains weak when
translating words with unseen patterns.

6. Insertion of English words is learned by introducing an imaginary token
null, during word alignment process and by learning a probability distri-
bution pins over all inserted English words. During decoding a decision
is made at each translation step, with a probability pins, whether to in-
sert an English word. Because IBM models do not learn which insertions
are more probable than others there is no evidence other than the lan-
guage model probability to score these. Another problem is that there
can be a large number of word insertions observed during training and it
is computationally challenging to try them all at each translation step.

7. Word deletion is modeled through the fertility model by learning pa-
rameters like p(0|zum). Again whether to delete a German word or to
translate it to some English word depends upon surrounding translations.
For example the German pronoun “Sie” always gets dropped preceded by
a verb such as “schreiben Sie - write”. In other contexts it will translate
into “you”.

2.2 Phrase-based Models
Phrase-based translation overcomes the problems of word-based model by mak-
ing a shift towards using phrases rather than words as a unit of translation
(Och and Ney, 2004; Koehn et al., 2003). It provides a simpler yet powerful
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translation mechanism by learning larger chunks of translation called phrases
which are not necessarily linguistic constituents.
Given a bilingual sentence pair, we segment the German and English sen-

tences into phrases such that words in phrases are a contiguous sequence of
strings. Each German phrase aligns to exactly one English phrase and vice
versa. Finally the phrases are reordered. Phrasal reorderings are modeled
through a distance-based ordering model. A possible segmentation of the sen-
tence pair “inflationsrate sollte unter zwei prozent gehalten werden – inflation
rate should be kept under two percent”, is shown in Figure 2.2.

Figure 2.2: Phrase-based Machine Translation

2.2.1 Advantages of the Phrase-based Model

Now we discuss how using phrases as a unit of translation overcomes the prob-
lems enumerated in the previous section.

1. Phrase-based models can learn many-to-many and many-to-one map-
pings that are necessary to produce translations such as “gehalten wer-
den – be kept” and “habe gemacht – made”. This also helps to get rid of
the fertility parameters.

2. Memorizing larger translation units such as “zum beispiel – for example”
and “zum kaffeetrinken – to drink coffee” enables phrase-based model to
learn local dependencies.

3. Insertions and deletions inside of the phrases are handled well. For exam-
ple by memorizing a phrase such as “will nicht schlafen – does not want
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to sleep”, the model learns insertion of verbal auxiliary “does”. Similarly
the model can learn deletion of German words by memorizing phrases
such as “kommen Sie mit – come with me” having unaligned German
pronoun “Sie”. Recall that “Sie” gets dropped in such constructions but
is translated to “you” in other context. Learning insertion and deletions
inside of phrases helps the phrase-based system to do away with the
complex notion of null words and separate probability distributions for
handling such cases.

4. The ability to memorize larger units also helps the phrase-based models
to produce idiomatic expressions such as “andere Länder, andere Sitten
– when in Rome, do as the Romans”.

5. Movement of words inside of the phrases are captured independently of
the reordering model. This phenomenon is particularly useful for short
distance reorderings such as flipping noun and adjective in French-to-
English translation task such as “beauté noire – black beauty”.

To summarize, phrase-based models are simple and effective. They are a
closer approximation of how humans translate. Using larger chunks as a unit
of translation saves us the separate modeling of different aspects of translation
such as fertilities, insertion and deletion. Many models for translation have
been proposed to date but phrase-based SMT still remains the best performing
statistical machine translation system for many language pairs.

2.2.2 Translation Models

In this section we discuss two probability models for learning phrase transla-
tion. One of these is based on the commonly used noisy channel model frame-
work and the other is based on a joint probability formulation.
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Conditional Probability Model

Recall Bayes’ theorem from Section 2.1.1. Given a German sentence “f” we
want to search for an English translation “e” that maximizes the following
equation:

argmax
e

p(e|f) = argmax
e

p(e)p(f |e)

In this section we discuss how to estimate the translation model p(f |e).
Given a bilingual sentence pair <f , e>, we choose a phrasal segmentation:

Sx = {(F1, F2, . . . , Fn), (E1, E2 . . . , En)}

such that every English phrase Ej aligns with exactly one German phrase Fi
and vice versa. Each Fi and Ej contains one or more contiguous German and
English words respectively. The translation probability of a sentence given the
segmentation Sx is given as:

p(f |e) =
n∏
i=0

p(Fi|Ej)d(αi − βi−1 − 1)

where p(Fi|Ej) is the phrase translation probability and d(αi − βi−1 − 1) is
the distance-based reordering model to penalize unjustified reorderings. This
formulation can be defined as the basic phrase-based model.
The phrase-based model makes a phrasal independence assumption accord-

ing to which all phrases are translated independently of each other. The prob-
ability of a phrase pair < Fi, Ej > is estimated as:

p(Fi|Ej) = count(Fi, Ej)
count(Ej)
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Figure 2.3: German–English Sentence Pair with a Phrasal Segmentation

Curr. Phrase Fi Prev. Phrase Fi−1 α(i) β(i) αi − βi−1 − 1
wäre – 7 0 +6

ebenso unverantwortlich wäre 8 7 0
zu wollen , ebenso unverantwortlich 4 9 -6

noch weiter gehen zu wollen , 1 6 -6

Table 2.1: Distortion Model for Phrase-based SMT

The quality of translation depends upon how good the probability estimates
for p(Fi|Ej) are. For smaller corpora containing a few thousand sentences,
the statistics might be too sparse for the phrase-based system to produce high
quality translation. It can nevertheless fall back to word-based translation since
the minimal phrasal unit will have at least one German and English word pair.

Reordering Model The term d(αi−βi−1−1) is the distance-based reordering
model as used in phrase-based model. αi denotes the index of the first word
of the German phrase Fi and βi−1 represents the index of the last word of the
German phrase Fi−1. Fi−1 represents the previously translated German phrase.
Consider the German-English sentence pair with a phrasal segmentation and
alignment as shown in Figure 2.3. Table 2.1 gives the reordering distance for
each phrase Fi.
A reordering distance of 0 means monotonic reordering i.e. the current phrase

was translated monotonically with respect to the previous phrase. A reordering
distance of +6 means that we jump ahead 6 words in a sequence to translate
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a German phrase. Similarly -6 means jumping back over 6 words from the
current position to cover a German phrase. See Table 2.1 for the examples
of each of these. Instead of using a probability distribution, a decaying cost
function d(x) = γ|αi−βi−1−1| is used where γ ∈ [0, 1] (Marcu and Wong, 2002;
Koehn et al., 2003). This function penalizes longer distance reorderings.

Phrase Extraction Method Different methods to extract phrases from a
parallel corpus have been proposed in the literature. Some of these are based
on extracting phrases from the word alignments (Tillmann, 2003; Zhang et al.,
2003; Zhao and Vogel, 2005). While others extract phrases directly from the
sentenced-aligned corpora, using pattern mining (Shin et al., 1996), matrix
factorization (Goutte et al., 2004) and based on EM training (Marcu and
Wong, 2002).

Symmetrization The phrase extraction method (Koehn et al., 2003) used in
Moses1 – a state-of-the-art phrased-based machine translation system is based
on the word alignments. Given the sentenced-aligned parallel data the first
step is to obtain word alignments. This is done by running GIZA++ (Och,
2000), a toolkit for word alignments, that uses IBM Models or any other word
alignment method e.g. Liang et al. (2006); Fraser and Marcu (2007).
The IBM models do not align English words to more than one German word,

this problem needs to be rectified. This is done by symmetrization. GIZA++
is run twice, first using German as source and English as target, then flipping
the direction. Given the sentence pair:

noch weiter gehen zu wollen , wäre ebenso unverantwortlich

it would be just as irresponsible to wish to go further

GIZA++ learns German-to-English and English-to-German alignments as
shown in Figure 2.4.

1We will refer to Moses (http://www.statmt.org/moses) as the standard phrase-based
model in this thesis
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Figure 2.4: Word Alignments (a) German-to-English, (b) English-to-German,
(c) Union of (a) & (b)
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A number of heuristics have been proposed for symmetrization namely, inter-
section, union, grow etc. The best method depends upon the translation task
and whether precision is more desirable or recall. Intersection produces high
precision alignments whereas union produces high recall alignments. Sparse
alignments tend to work better for Chinese-to-English translation, therefore
intersection is used for symmetrization. Union gives better performance for
Arabic-to-English task (Fraser and Marcu, 2007) because recall is more im-
portant in this case. For most other language pairs, grow-diag-final-and gives
best performance. Symmetrization based on union for the given example is
shown in Figure 2.4(c).

Extraction Now that we have many-to-many and many-to-one alignments
along with one-to-one and one-to-many alignments, we can extract all phrase
pairs that are consistent with the word alignments. A phrase pair < Fi, Ej > is
said to be consistent with a word alignment A if the words in Fi are only aligned
with words in Ej and vice versa and both Fi and Ej are continuous. Unaligned
German and English words can be a part of a phrase Fi and Ej as long as they
satisfy the constraint that words in a phrase can not be discontinuous. Given
the word alignments shown in Figure 2.4(c), we extract the phrases shown in
Table 2.2. Note phrases like “it would be – wäre”. Although “it” is not aligned
to a word on the German side it can still be a part of this phrase because
the English phrase is still a continuous sequence of words. On the other hand
we can not extract phrase like “it further – noch weiter” because “it” and
“further” are discontinuous with respect to each other.
Phrase-based model extracts both short and longer phrases. Longer phrases

are helpful because they capture larger context and more dependencies. On
the other hand shorter phrases are more frequent and generalize well to un-
seen sentences. Although it is computationally possible to extract phrases of
unbounded length during training, results have shown that, due to data spar-
sity, phrases applied during decoding are fairly short (Callison-Burch et al.,
2005; Zhang and Vogel, 2005). Therefore only phrases with 6 or less German
words are extracted.
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English German
it would be wäre

it would be just as wäre ebenso
it would be just as irresponsible wäre ebenso unverantwortlich
it would be just as irresponsible , wäre ebenso unverantwortlich

it would be just as wollen , wäre ebenso
irresponsible to wish unverantwortlich
it would be just as zu wollen , wäre

irresponsible to wish to ebenso unverantwortlich
it would be just as gehen zu wollen ,

irresponsible to wish to go wäre ebenso unverantwortlich
it would be just as irresponsible noch weiter gehen zu wollen

to wish to go further , wäre ebenso unverantwortlich
would be wäre

would be just as wäre ebenso
would be just as irresponsible wäre ebenso unverantwortlich
would be just as irresponsible , wäre ebenso unverantwortlich

would be just as wollen , wäre
irresponsible to wish ebenso unverantwortlich
would be just as zu wollen , wäre

irresponsible to wish to ebenso unverantwortlich
would be just as gehen zu wollen ,

irresponsible to wish to go wäre ebenso unverantwortlich
would be just as irresponsible noch weiter gehen zu wollen

to wish to go further , wäre ebenso unverantwortlich
just as ebenso

just as irresponsible ebenso unverantwortlich
irresponsible unverantwortlich

to wish zu wollen
to wish zu wollen ,

to wish to go gehen zu wollen
to wish to go gehen zu wollen ,

to wish to go further noch weiter gehen zu wollen
to wish to go further noch weiter gehen zu wollen ,

to zu
to go gehen

to go further noch weiter gehen
to go gehen

to go further noch weiter gehen
further noch weiter

Table 2.2: Extracted Phrases
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Joint Probability Model

The models that we have discussed so far, tell a story about how to map
German sentences to English sentences. Joint models instead try to capture
how German and English sentences can be simultaneously generated. Joint
models thus capitalize on mutual information unlike conditional model which
does not model anything about the distribution of German. The two main
pieces of work on joint models for phrase-based machine translation are based
on EM training of phrase models (Marcu and Wong, 2002) and phrase-based
unigram model (Tillmann and Xia, 2003) building on word alignments like the
standard phrase-based model discussed in the previous section. Let us briefly
discuss each of these:

Joint Probability Phrase-based Model with EM Training Most phrase-
based models build their phrase inventory on top of word alignments. The
model proposed in Marcu and Wong (2002), instead estimates phrase tables
directly from the sentence aligned parallel corpus using EM training, just as
done in word-based IBM models. The key difference is that the generative
story explains how German and English are jointly generated, rather than
how English gets converted into German. Secondly the restriction of at most
one German word aligned with any English word is removed.
German and English phrases are generated in form of concepts. Each con-

cept ci consists of a phrase pair < Fci
, Eci

> that are hypothesized as trans-
lation of each other. A bag of concepts which completely covers the sentence
pair < f, e > is denoted by a segmentation Sx = c1, c2 . . . , cn. Each concept ci
is generated with a probability p(Fci

, Eci
). The probability of a segmentation

Sx is given as:

p(Sx) =
n∏
i

p(Fci
, Eci

)

There can be many possible phrasal segmentations for a sentence pair <
f, e >. Let S be the set of all possible segmentations for a sentence pair. The
overall translation probability is calculated by summing over them.
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p(e, f) =
∑
Sx∈S

p(Sx)

p(e, f) =
∑
Sx∈S

n∏
i

p(Fci
, Eci

)

Marcu and Wong (2002) also present an extension of this model which adds
a distortion parameter to penalize unlikely phrase alignments. The distortion
model takes into account absolute word positions just like IBM Model 3.
The generative story in word-based models restricts the number of German

and English words generated in a step to be 1. Removing this restriction in
the current model, exponentially increases the number of alignments that can
be hypothesized between the two sentences making the training process in-
tractable. The complexity of the phrase alignment problem is NP-complete
(DeNero and Klein, 2008). This problem has been addressed in Birch et al.
(2006) by constraining the phrase alignments with the help of word alignments
obtained from IBM model. However, for the larger data sets their performance
is behind the standard phrase-based models.

Joint Probability Phrase-based Model based on Word Alignments The
model proposed in (Tillmann and Xia, 2003) is also based on joint probability
formulation but extracts phrases from the output of an HMM word alignment
model (Vogel et al., 1996). The HMM viterbi training is carried out twice by
training in both translation directions. The alignments are then symmetrized
just as discussed in the standard phrase-based model using one of the proposed
heuristics.
Previous research has shown that the joint probability phrase-based model

tends to work better for smaller data sets (Birch et al., 2006).
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2.2.3 Lexicalized Reordering Models

Reordering is one phenomenon that makes the translation of some language
pairs harder than others in statistical machine translation. For example trans-
lation between Hindi and Urdu or between Thai and Lao is straightforward
because these language pairs have the same word order. On the contrary trans-
lation between German and English or Japanese and English language pairs is
more difficult because of their different syntactic structures.

IBM Models: The reordering mechanism in IBMmodels was designed for the
translation of language pairs like French–English, Spanish–English etc. that
have relatively similar syntactic structure and exhibit mostly short distance
movements such as swapping of noun and an adjective in French-English task.
The overall idea was that the translation model is mainly responsible for the
adequacy, i.e. how well the hypothesized English sentence represents the words
in the given German sentence. The fluency of the output sentence is judged by
the language model. Reordering models based on absolute word positions were
added inside the translation models to take some burden from the language
model and filter out some unlikely word permutations. However, the commonly
used language model in statistical machine translation does not span beyond a
window of 3–5 words. This window might be too small for judging the overall
fluency of the English sentence. Therefore it is unfair to expect the language
model to take all the responsibility for the word order.
Model 4, for example learns the parameter d1(−3 | kept, prozent) according

to which German word translates to “kept”, and is placed in a position, 2
slots before the target position for the word “prozent”. This can not generalize
to the test sentence “inflationsrate sollte zwischen 2 bis 6 prozent gehalten
werden – inflation rate should be kept between 2 to 6 percent”, which requires
“kept” to be placed 4 slots before the target position of the word “prozent”. The
conditioning of the position index (relative or absolute) on the words “kept”
and “prozent”, results in sparse estimates. Model 4, therefore uses word classes
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to over come this problem. This however, results in a poor reordering model
which is not discriminative enough.

Lexicalized Reordering: As the field has evolved over the last decade or so,
research has gone in the direction of learning lexicalized models . Rather than
using reordering distances with conditioning on word classes, three broader
orientation classes namely monotonic, swap and discontinuous are defined.
We now learn how a phrase pair was translated with respect to the previously
translated phrases. The orientation model of Tillman (2004) and Tillmann and
Zhang (2005) defines the orientation of a phrase pair < Fi, Ej > as follows:

1. Monotonic if Fa(j−1) and Fa(j)
2 are adjacent and are in the same order as

Ej−1 and Ej. For example orientation of the phrase “ebenso unverant-
wortlich – just as irresponsible” is monotonic with respect to the phrase
“wäre – it would be” (See Figure 2.5).

2. Swap if Fa(j−1) and Fa(j) are adjacent but are in an opposite order as Ej
and Ej−1. For example orientation of the phrase “noch weiter gehen – to
go further” is swap with respect to the phrase “zu wollen , – to wish”.

3. Discontinuous if Fa(j−1) and Fa(j) are not adjacent to each other. For
example orientation of the phrase “zu wollen , – to wish” is discontin-
uous with respect to its previously translated German phrase “ebenso
unverantwortlich – just as irresponsible”.

See Figure 2.6 and Table 2.3 for illustration of the example shown in Figure
2.5.
The lexicalized reordering model used in standard phrase-based SMT uses

the same orientations (Koehn et al., 2005a) however, with a slight difference.
Although the orientations are being learned for a phrase pair, the decision of

2The mapping function a(j) aligns the English phrase Ej to the German phrase Fi as
Fi = Fa(j)
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Figure 2.5: German–English Sentence Pair with a Phrasal Segmentation

Current Previous Orientation
wäre – it would be – (d)iscontinous

ebenso unverantwortlich – wäre – it would be (m)onotonic
just as irresponsible
zu wollen , – to wish ebenso unverantwortlich – (d)iscontinous

just as irresponsible
noch weiter gehen – to go further wollen , – to wish (d)iscontinous

Table 2.3: Orientation Model for Phrase-based SMT – Current Phrase Pair
< Fa(j), Ej >, Previous Phrase Pair < Fa(j−1), Ej−1 >

which orientation to choose depends upon word alignments. This is because
the phrasal segmentation is unknown at the training time.
For each extracted phrase pair we check whether there is an alignment point

to its top left or top right in the alignment matrix. If there is an alignment point
to its top left, the orientation is monotonic. If there is an alignment point to its
top right, the orientation is swap. Otherwise the orientation is discontinuous.
An illustration of this is shown in Figure 2.7. Phrases are marked with boxes
(as previous) and alignment points in the matrix are shaded as gray.
Notice that the orientation for the phrase pair “noch weiter gehen – to go

further” as defined by Tillman’s (Phrase-based) reordering model is swap where
as it is discontinuous in Koehn’s (word-based) reordering model. Although
word-based alignments are used during training in Koehn’s method, they also
use phrasal alignments during decoding, because the phrasal segmentation is
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Figure 2.6: Lexicalized Reordering Model – Orientations (m)onotonic, (s)wap,
(d)iscontinuous

known at that time. This however, results in a mismatch between training and
decoding.
The reordering probability is calculated by conditioning on the German and

English phrases under consideration as:

pr(orientation|Fa(j), Ej) = count(orientation, Fa(j), Ej)
count(Fa(j), Ej))

Similar models are proposed in Ohashi et al. (2005). They split the dis-
continuous orientation into two categories namely right discontinuity and left
discontinuity. Different orientations according to these models are shown in
Figure 2.8. Moreover, instead of conditioning on German and English phrases
they condition on the more general POS tags for the previous German and En-
glish phrase pairs. Each phrase is represented by one tag. Different heuristics
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Figure 2.7: Lexicalized Reordering Model (Koehn et al., 2005a)

for choosing POS tag of a phrase have been discussed. Nagata et al. (2006)
conjecture that estimating the reordering model from the relative frequencies
of German and English phrases result in very sparse statistics. In order to rem-
edy this problem they propose two models based on N-best phrase alignments
and grouping the phrases into 20 clusters.
The lexicalized reordering models (Tillman, 2004; Koehn et al., 2005a) pro-

vide a substantial improvement over distance-based linear reordering models by
handling short distance non-local movements where two phrases get swapped.
However, they remain weak on handling long distance reorderings which moti-
vates hierarchical and syntax-based machine translation. Coming back to the
example shown in Figure 2.3, the clause “it would be just as irresponsible”
should swap with the subordinate clause “to wish to go further”. The idea of
recursively merging adjacent phrases into bigger blocks and deciding orienta-
tion of a phrase based on the bigger block is proposed in Galley and Manning
(2008). The orientation of a phrase is decided with respect to the block of
previously translated phrases by looking at the top-left and top-right corners
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Figure 2.8: Lexicalized Reordering Model (Ohashi et al., 2005)

a phrase in alignment grid just as before. The only difference is that instead of
looking at alignment points (like Koehn) or the previous phrase (like Tillman)
this method looks at a block of merged phrases. Every step tries to merge
the current phrase with a block of previously translated phrases if they are
adjacent (monotonic or swap). See Figure 2.9 for illustration. Blocks contain-
ing more than one phrase are marked with a dotted line. The orientation of a
phrase is decided with respect to the block. As a result of this modification,
the orientation of the phrase “zu wollen , – to wish” is swap (rather than dis-
continuous as in previous models). The orientation is defined with respect to
the block formed by combining the adjacent phrases “wäre – it would be” and
“ebenso unverantwortlich – just as irresponsible”.
In their advanced model Galley and Manning (2008) also propose to split

the category “discontinuous” into right and left discontinuities. Moreover they
also learn forward orientations along with the backward orientations. While
learning a forward orientation model we consider the next German phrase (or
block of phrases) that are yet to be translated. Instead of looking at the top-
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Figure 2.9: Lexicalized Reordering (Galley and Manning, 2008) – Backward
Orientation Model

right and top-left corners of a phrase we now look at the bottom right and
bottom left corners. If there is a block (of one or more phrases) at bottom
right corner, the forward orientation will be monotonic. If there is a block at
the bottom left corner, the forward orientation will be swap. Otherwise it will
be discontinuous. See Figure 2.10 for illustration. Finding forward orientation
during training is trivial because we know the German and English strings
with some phrasal segmentation in advance. But during decoding we can only
accurately estimate orientation for the previous German phrases (backward
orientation), because we do not know ahead of time how the remaining part of
the German sentence will be translated and what segmentation will be chosen.
To overcome this problem approximations are done during decoding. Table 2.4
shows forward and backward orientation models as learned by Koehn (word-
based) , Tillman (phrase-based) and Galley’s (hierarchical) reordering models.
The hierarchical reordering model gives a statistically significant improvement
over word-based and phrase-based models for Chinese-to-English and Arabic-
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to-English translation tasks (Galley and Manning, 2008).

Figure 2.10: Lexicalized Reordering (Galley and Manning, 2008) – Forward
Orientation Model

Phrase Pair < Fa(j), Ej > Word-based Phrase-based hierarchical
Back Fwd Back Fwd Back Fwd

wäre – it would be d m d m d m
ebenso unverantwortlich – m d m d m d

just as irresponsible
zu wollen , – to wish d d d s s s

noch weiter gehen – to go further d d s d s m

Table 2.4: Forward and Backward Orientation Models for Phrase-based SMT

A lexicalized reordering model has also been used for SMT models other than
the phrase-based system. Crego and Yvon (2010) used lexicalized reordering
with tuple-based N-gram SMT (Mariño et al., 2006) (see the next chapter
for details of N-gram-based SMT). They merge the monotonic and the swap
categories to form a joint category known as consecutive along with using right
and left discontinuous categories.
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2.2.4 Log-linear Model

Machine translation is a very difficult problem. Given the limited knowledge
extracted from the parallel data it is impossible to model all the reasons why
humans choose to translate one way or another. But we can add many knowl-
edge sources that help to improve translation. For example when we pick a
phrase for translation we can give additional probability to that phrase if it is
a linguistic constituent. We can prefer long phrases over short phrases because
longer phrases cover more dependencies or short phrases over long because
their estimates are more reliable. We can add another language model which
is based on a different genre of text. To add all kinds of different knowledge
sources we shift from generative models to discriminative training.
The generative models already break the translation process into translation

and language model components. The translation model can be further broken
into lexical probabilities and a reordering model. In a discriminative model each
of these model components is viewed as a feature. We can add any relevant
and useful information inside of a translation process as a feature. Different
features such as a target-side parse which might be difficult to integrate during
decoding can be added as a post-processing feature for the re-ranking of n-
best translations. The first application of discriminative training in statistical
machine translation was proposed by Och and Ney (2004) which redefines
p(e|f) as:

argmax
e

p(e|f) = argmax
e


J∑
j=1

λjhj(f, e)


where hj(f, e) is a feature function such as the log probability of the reorder-

ing or the language model etc. and J is the number of feature functions.
Some features are more reliable than others, for example monolingual data is

available in much more abundantly than bilingual data. Therefore we can have
very reliable statistics for the monolingual language model feature. This means
that if the language model feature supports a translation hypothesis we should
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give it a higher weight than any other feature with less reliable estimates. In
order to achieve this, we assign a feature weight λj to each feature hj(f, e).
Several algorithms have been proposed for the tuning of feature weights. More
commonly used methods are city-block search (varying one parameter at a
time) as used in MERT (minimum error rate training) (Och, 2003) Powell
Search, and the Simplex algorithm (Nelder and Mead, 1965).

Optimization of Lambda Weights

The process of parameter optimization is iterative. We pick a set of sentences
that from the same domain as that of the test set, and call it dev-set (develop-
ment set). The next step is to run the decoder (discussed in the next section)
on dev-set with some random initial feature weights. The decoder then pro-
duces a list of N-best translations for all the sentences in the dev-set. The list
of N-best translation is input to the parameter optimization algorithm (Powell
Search, Simplex etc.), which re-ranks the n-best list such that it maximizes on
some evaluation metric3 with respect to the English part of the dev-set. The
re-ranking of N-best translation list is done by adjusting the feature weights.
The decoder is then run on the dev-set with the optimized feature weights
to produce another set of N-best translations. Parameter optimization is now
done on the N-best lists from all previous iterations. This process is repeated
until the feature weights converge or for a specified number of iterations. See
Figure 2.11 for an illustration.

Features used in Standard Phrase-based SMT

The features that are typically used in phrase-based systems(Koehn et al.,
2005a) are:

1. English-side Language Model

3Lots of metrics have been proposed for the automatic evaluation of statistical machine
translation such as WER (word error rate), BLEU (Papineni et al., 2002), NIST (Dod-
dington, 2002), METEOR (Banerjee and Lavie, 2005) etc
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Figure 2.11: Learning Feature Weights

2. Phrase Translation Probability conditioned in both directions p(Fi|Ej)
and p(Ej|Fi)

3. Lexical Translation Probability – measures reliability of a phrase pair
based on word-alignments. Word probabilities are also conditioned in
both directions.

4. Word Penalty – counts the number of words produced in a translation
output. When assigned a negative weight, it prevents the system from
producing too short sentences.

5. Phrase Penalty – counts the number of phrases used to produce the
output sentence. It controls the trade off between using shorter and longer
phrases.

6. Linear Reordering Penalty – dis-prefers long distance reorderings.
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7. Lexicalized Reordering Parameters - Discussed in the previous section.
Each orientation class (monotonic, swap and discontinuous) is used as a
separate feature. Forward and backward orientations constitute separate
features. This results in 6 total features. Monotonic features for example
can be defined as: fm = ∑n logp(oi = M |...).

2.2.5 Search

After tuning the feature weights for each model component, the remaining
problem in machine translation is to decode the German sentence and produce
an English output which maximizes the model score. Searching for such a
sentence is a hard problem, because there can be an exponential number of
ways to translate a source sentence in terms of word reordering. Knight (1999)
mapped the decoding problem into a Traveling Salesman Problem and showed
that search in SMT, for the models that we have discussed so far, is an NP-
complete problem. An approximate solution is obtained by putting constraints
on the word order and by applying pruning strategies.
The state-of-the-art decoder described in Koehn et al. (2007) uses beam

search to build up the translation from left to right (Tillmann and Ney, 2003;
Koehn, 2004a). Given a German sentence, the first step is to extract all possible
phrases with their possible English translations and feature values. The decoder
then initializes a set of n stacks where n is the number of words in the German
sentence. The stacks are arranged such that each stack i represents hypotheses
that have already translated i many German words. Our goal is to find the
best scoring hypothesis in stack n, that has translated all German words.
A hypothesis maintains several pieces of information such as, the German

word(s) it translates, the English translation for those German words, a back
pointer to the parent hypothesis, coverage vector (German words so far covered
by this hypothesis and its predecessor hypotheses), cost for each component
feature in the model etc. Figure 2.12 shows a sample hypothesis.
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German : noch weiter gehen
English : to go further
Coverage Vector : 111000000
Features Values:

Language Model : p(Ej|e1 . . . em) = −0.15
Translation Model : p(Ej|Fi) = −0.45
Translation Model : p(Fi|Fj) = −1.30
Translation Model (Lex) : p(Ej|Fi) = −0.33
Translation Model (Lex) : p(Fi|Ei) = −0.76
Word Penalty : −3
Phrase Penalty : −1
Distance Penalty : 0
Back Orientation : p(monotonic|Ei, Fj) = −0.23
Forward Orientation : p(monotonic|Ei, Fj) = −1.35

Cost: −8.57
Previous Hypothesis : Back Pointer
Future Cost Estimate: -23.34

Figure 2.12: A Sample Hypothesis

Hypothesis Extension

A hypothesis is extended by picking a translation phrase whose words are not
covered yet, with its translation from the inventory of extracted phrases. All
the feature values are computed with respect to the extending hypothesis. For
example if we are extending the above hypothesis with the phrase “wäre –
would be”, the tri-gram language model probability would be:

plm = p(would|go further) ∗ p(be|further would)

Similarly the backward orientation probability p(discontinous|wäre, would be)
and distance penalty d(wäre, zu) is computed. After calculating the final cost
of a hypothesis it is placed in a stack i such that i = number of German words
covered by this hypothesis and its predecessors (all the parent hypotheses).
In this case we add to stack 5 since the two hypotheses cumulatively cover 5
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words “noch weiter gehen zu . . . wäre . . . ”. This information is encoded in the
coverage vector of each hypothesis. Figure 2.134 abstracts the decoding process
and Figure 2.14 shows a part of the stack space.

Figure 2.13: Beam Search Decoding

In order to get the final output, the best scoring translation is searched for,
in the last stack. This hypothesis is then traversed to the starting hypothesis
through back pointers to get the best scoring English sentence. An empty hyp
is the starting hypothesis that has covered no German words as yet.

2.2.6 Decoding Complexity

At the beginning of this section we mentioned that decoding for SMT has been
shown to be an NP-complete problem. In this section we will briefly go through
how this is dealt with in practice.

Hypothesis Recombination

Hypothesis recombination takes benefit from the observation that hypotheses
producing identical translations can be merged. This is particularly useful in
phrase-based systems where different phrasal segmentations lead to the same
output translation. See Figure 2.14. The hypothesis “wäre ebenso unverant-
wortlich – it would be just as irresponsible” also has an alternative represen-
tation where “wäre – it would be” and “ebenso unverantwortlich – just as

4This figure is borrowed from Koehn (2004a)
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Figure 2.14: Hypothesis Extension and Recombination

irresponsible” are translated as two separate phrases in two hypotheses. The
phrase-based system gives separate model scores to each of these representa-
tions. We can therefore safely drop the worse scoring hypothesis, or merge it
into the better scoring hypothesis, if we are interested in N-best list of trans-
lations.
Recombination can also take place even if the output strings are different

but identical in the language model context, coverage vector, reordering con-
text (position of the last German word covered). See Figure 2.14 again. The
worse scoring hypothesis “ebenso unverantwortlich – just as irresponsible” ex-
tending from “wäre – would be” could be merged into the hypothesis ebenso
unverantwortlich – just as irresponsible” extending from “wäre – it would be”,
because both hypotheses have the same coverage vector ({000000111}), lan-
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guage model context (“would be”) and the position of the last German word
translated (7). The argument is that the merged hypothesis can never lead to
the best output translation according to the model. Any hypothesis leading
from the merged hypothesis will have a better model score if continued from
the better hypothesis and thus will be placed higher in the final stack.

Pruning

Hypothesis recombination makes the search more efficient. It contributes a lot
in removing spurious ambiguities that arise due to phrasal segmentation, how-
ever it does not reduce the complexity of the search problem. To do that we
resort to a less safe technique called pruning. The idea of pruning is to keep
only the most promising hypotheses at any point in search and throw away
the rest. Two commonly used pruning techniques are histogram pruning and
threshold pruning. Hypotheses in stacks are kept in sorted order. Histogram
pruning allows only the k-best hypotheses per stack. The threshold pruning
method defines a beam threshold α. All the hypotheses worse than the best
scoring hypothesis in a stack by a factor of α are thrown away. Both methods
have their pros and cons and are used in practice. Limiting the stack space
to retain k hypotheses per stack reduces the complexity of the problem from
being exponential to polynomial (Koehn, 2004a, 2010). Pruning, unlike hy-
pothesis recombination, is not a safe method. Because there is a chance that
we may throw away some hypothesis, that is currently ranked below the k best
hypotheses in the stack, but may produce the best translation in the end if
not dropped. This is called a search error.

Reordering Limit

The decoding problem is further simplified by using a hard reordering limit on
the reordering. Recall the linear reordering feature d(αi−βi−1) that calculates
the jump distance in terms of number of words skipped or jumped over when
translating a phrase Fi. Apart from using this feature as a soft constraint,
phrase-based system also use the reordering distance as a hard constraint.
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This is done by disallowing movement beyond a window of 5-8 words (Koehn,
2010; Galley et al., 2009). This improves the decoding speed dramatically,
because the number of translation options to be tried is significantly reduced.
Using a hard constraint on reordering not only speeds up the decoding process
but also improves the translation quality by reducing the number of search
errors. The reordering model in the phrase-based system is unable to discount
bad long-distance reorderings enough, causing good hypotheses to be dropped
which results in search errors. Using a hard distortion limit might not be a bad
idea for the translation of language pairs like French-English, Arabic-English
and Chinese-English, etc. But this is undesirable for the translation of German
and Japanese to English. We will come back to this problem later when we
talk about the drawbacks of phrase-based systems.

2.2.7 Future Cost

When the pruning of hypotheses is done on the basis of model scores only,
there is a problem. Some parts of a sentence are more difficult to translate
than others. For example the translation of content words, such as “ebenso
unverantwortlich – just as irresponsible”, is more expensive than translating
frequent words, such as “zu wollen – to wish”. Because stacks are arranged
based on the number of German words, that the hypotheses in it have trans-
lated so far, this leads to an unfair hypothesis comparison, resulting in search
errors. The hypotheses that have skipped the difficult part of the sentence un-
til now, will eventually need to translate it during later stages of decoding. In
order to avoid this problem, an estimate of future cost is used along with the
model score of the hypothesis, when comparing these for pruning. Future cost
is an estimate of the expected cost required to translate the remaining part
of the German sentence. A perfect future cost estimate will eliminate search
errors altogether. However, computing the precise future cost is as complex as
the decoding problem. Therefore, we resort to approximate estimates.
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Estimation of Future Cost

In this section we describe one commonly used method for future cost estima-
tion which is used in standard phrase-based SMT and in many other decoders
that do left-to-right beam decoding.
The future cost is estimated in two steps. Step 1 estimates the cost of trans-

lating each extracted phrase. Step 2 uses a dynamic programming algorithm
to estimate the future cost for bigger spans using estimates obtained from Step
1.

Step 1 – Future Cost for Phrases: The first step is to estimate the future
cost for each extracted phrase. We will estimate the probability/cost of each
feature component independent of context. Because of the phrasal indepen-
dence assumption the probabilities of features like p(Ei|Fj), p(Fj|Ei) and their
lexical probabilities can be estimated exactly. We can also compute the word
and phrase penalties exactly. However, we do not have the language model
context for the English part of the phrases, therefore we settle to unigram
estimate for the first word of phrase, bigram estimate for the second word of
a phrase and so on. The language model estimate for the phrase “noch weiter
gehen zu – to go further” would be:

plm = p(to) ∗ p(go|to) ∗ p(further|to go)

The reordering cost is usually ignored in standard phrase-based decoding. An
alternative approach is to assume that every phrase will be translated mono-
tonically so the distance penalty would be zero and the lexicalized reordering
model probability would be estimated as:

pr = p(monotonic|noch weiter gehen zu, to go further)

Given all the feature values, the total cost of a phrase pair is calculated.
A German phrase can have many possible English translations. We pick the
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phrase pairs with the lowest cost. This process is repeated for all the extracted
phrases.

Step 2 – Future Cost for Larger Spans: Loaded with the best estimate
for covering a phrase, the next step is to estimate the cost for covering larger
spans. Standard dynamic programming technique can be used here. The cost
of a span cost(i, k) is calculated as:

cost(i, k) = mini≤j≤k{cost(i, j) + cost(j + 1, k)}

At each step we break the problem cost(i, k) into two sub-problems cost(i, j)
and cost(j + 1, k) until we hit the base case i.e. a phrase spanning i, j . The
future cost table is initially loaded with the initial costs extracted in Step 1.
See Figure 2.15 for illustration and Koehn (2010) for details.

Figure 2.15: Future Cost Estimation for Larger Spans

Using Future Cost during Search: Once the cost for bigger spans is es-
timated we have a look up function cost(i, j) that provides an estimate for
translating German words in the span i to j. This estimate can be added to
the actual cost of the hypothesis during decoding to make a fair comparison
with other hypotheses that might be covering a different set of German words.
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The future cost is computed during decoding by looking at the coverage
vector of the hypothesis. Consecutive zeros represent span of uncovered words.
All such spans are first detected. Then the cost function cost(i, j) is used to
calculate the cost of such spans. These are finally added to the actual hypoth-
esis cost to get a final cost which is then used for the pruning. See Figure 2.16
for illustration. Hyp 1 and Hyp 2 both cover three German words but have
different coverage. Hyp 1 has to translate German words 4 to 9 and Hyp 2 has
to translate words 1 to 4 and words 8 and 9. The future cost estimate for the
uncovered spans are added to the actual hypothesis cost. Pruning is then done
based on total cost of the hypothesis.

Figure 2.16: Using Future Cost during Decoding

2.3 Drawbacks of Phrase-based SMT
Phrase-based SMT provides a powerful translation mechanism which learns
local reorderings, translation of short idioms, and the insertion and deletion
of words sensitive to local context. However, phrase-based machine translation
also has some drawbacks.

1. Dependencies across phrases are not directly represented in the transla-
tion model.

2. Discontinuous phrases cannot be represented and used.

3. The reordering model is not designed to handle long range reorderings.

4. Search and modeling problems require the use of a hard reordering limit.
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5. The presence of many different equivalent segmentations increases the
search space.

6. Source word deletion and target word insertion outside phrases is not
allowed during decoding.

In this section we will discuss these drawbacks to motivate the research
conducted in this thesis. Some of the mentioned problems are inherent to
using phrases as translation units, while others are due to lack of modeling of
a specific phenomenon for which there is an ongoing research which tries to
solve these problems.

2.3.1 Handling of Non-local Dependencies

Phrase-based SMT models dependencies between words and their translations
inside of a phrase well. However, dependencies across phrase boundaries are
largely ignored due to the strong phrasal independence assumption. Recall that
the translation model is defined as:

p(f |e) =
n∏
i=0

p(Fi|Ej)d(αi − βi−1 − 1)

Consider the bilingual sentence pair shown in Figure 2.17. Reordering of
the German word “abstimmen” is internal to the phrase-pair “gegen ihre kam-
pagne abstimmen – vote against your campaign” and therefore represented
by the translation model. Given a hypothetical phrase-table shown in Table
2.5, the translation model correctly translates the German sentence “die men-
schen würden gegen ihre kampagne abstimmen – people would vote against
your campaign”. However, it fails to translate “die menschen würden gegen
meine außenpolitik abstimmen” (see Table 2.5 for a gloss), which is translated
as “people would against my foreign policy vote” unless the language model
provides strong enough evidence for a different ordering.
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Figure 2.17: Handling of Local Dependencies – Dotted lines = Word Align-
ments

German English
gegen ihre kampagne abstimmen vote against your campaign
sie würden they would
gegen against
ihre your
kampagne campaign
abstimmen vote
sie they
würden would
die menschen people
außenpolitik foreign policy
meine my

Table 2.5: Hypothetical Phrase Table

Why? In the prior example, the translation model is able to capitalize on the
phrase pair “gegen ihre kampagne abstimmen – vote against your campaign”,
observed during training. The same can not be done for the latter example
where data sparsity forces the translation model to fall back to word translation
and deal with the reordering of the verb “abstimmen – vote” through other
means. This phenomenon is fairly common in practice. Although the phrase-
based system has the capacity to learn phrases of unrestricted length, previous
research has shown that phrases used at test time are shorter than 3 words on
average (Zhang and Vogel, 2005; Callison-Burch et al., 2005).
This problem has been recently addressed by Galley and Manning (2010)
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by learning discontinuous source and target phrases. See section 2.5 for the
details.

2.3.2 Modeling of Gappy Units

Another weakness of the traditional phrase-based system is that it can only
capitalize on continuous phrases. If the discontinuity occurs inside of a phrase
it can be learned and used during decoding. However, such dependencies can
not be handled across phrases.

German English
hat er ein buch gelesen he read a book
hat has
er he
buch book
gelesen read
zeitung newspaper
dann then
märchenbuch story book

Table 2.6: Hypothetical Phrase Table

Figure 2.18: Handling of Gaps – Dotted lines =Word Alignments – (a) Learned
Phrase (b) Unseen Context

Given the phrase inventory in Table 2.6, phrasal SMT is able to generate the
example in Figure 2.18(a). The information “hat...gelesen – read” is internal
to the phrase pair “hat er ein buch gelesen – he read a book”, and is therefore
handled conveniently. On the other hand, the phrase table does not have the
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entry “hat er eine märchenbuch gelesen – he read a story book”. Hence, there is
no option but to translate “hat...gelesen” separately, translating “hat” to “has”
(as in Figure 2.18(b)) which is a common translation for “hat” but wrong in
the given context.
Other examples in German, where modeling of discontinuous translation

units can be helpful are particle verbs. Such verbs can have separable pre-
fixes that can move to the end of clause or sentence. An example of this is
“(zu)machen – close” as in “machen sie bitte die tür zu – please close the door”.
Instead of learning a discontinuous translation unit “machen...zu – close”, a
phrase-based system aligns “machen–close” and learns deletion of “zu”. This
is problematic because the connecting prefix can change the meaning of the
verb. For example “(auf)machen” means “open”. On seeing a sentence like
“machen sie bitte die tür auf”, the phrase-based system has no clue whether
“machen” means “open” or “close” in the given context. Discontinuous units
are also common in other languages such as “turn...off” in English as in “turn
all electric devices off”.
An initial effort to overcome this problem for phrasal SMT was proposed in

Simard et al. (2005). They introduce non-contiguous phrases having gaps on
both German and English sides. For the example under discussion, a phrase-
pair such as “hat 333 gelesen – read” is learned. Each 3 sign is a place-
holder for one skipped word. A problem with this approach is the fixed gap
width. Each gap must span exactly one word. This creates an issue of data
sparsity. The example will only help in cases where “hat” and “gelesen” are
separated by exactly three words. The mechanism can successfully translate
“dann hat er ein märchenbuch gelesen”, however fails when translating “er hat
ein märchenbuch gelesen – he read a story book”, in which case “hat” and
“gelesen” are separated by two words.
Recently Galley and Manning (2010) proposed using discontinuous phrases

on both the German and English side. Their representation does not limit
gaps to be of fixed size, hence making them more useful to generalize during
test. See section 2.5 for details. Context-free hierarchical models (Chiang, 2007;
Melamed, 2004) have rules like “hat er X gelesen – he read X” to handle such
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cases. The discontinuities on German side are handled naturally because of
source linearization in N-gram-based SMT (Crego et al., 2005c). Crego and
Yvon (2009), in their N-gram system, use split rules to deal with target-side
gaps and show a slight improvement on a Chinese-English translation task.
Chapter 3 describes N-gram-based machine translation.

2.3.3 Weak Reordering Model

The lexicalized reordering models discussed in Section 2.2.3 give state-of-the-
art performance for phrase-based machine translation. However, they are pri-
marily designed to deal with short distance movement of phrases such as swap-
ping two adjacent phrases. Long distance reordering often motivates parsing-
based machine translation systems (Melamed, 2004; Chiang, 2005). Galley and
Manning (2008) try to remedy this problem by defining the orientation based
on larger blocks rather than previous phrases. However, parameters learned by
this model remain weak on handling long distance reordering, and still heav-
ily rely on the language model to select the right word order. Let us revisit
the training example shown in Figure 2.17. The parameters learned from this
example are shown in Figure 2.19.

sie würden gegen ihre kampagne abstimmen

they would vote against your campaign

The relevant parameters learned from the example are the orientations of
the words “würden” and “abstimmen”, shown in Table 2.7, according to which
“würden – would” is translated monotonically with respect to its previous
phrase and its orientation is discontinuous with respect to the next phrase.
The orientation of “abstimmen – vote” is discontinuous with respect to the
previous and the next phrase.
Now consider applying these parameters to a sentence such as:
All the hypotheses shown in Table 2.8 are equivalent in terms of reordering

parameters of the words “würden” and “abstimmen”. Which of these hypothe-
ses gets selected as the best translation depends upon the feature values of the
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Figure 2.19: Lexicalized Reordering Model – (a) Word Alignments (b) Back-
ward Orientation (c) Forward Orientation

other parameters such as orientation of other words in the sentence, language
model score and reordering distance etc. The linear distortion parameter will
penalize movement of “abstimmen”. The monolingual language model is no
longer able to compensate for the dis preference of the linear distortion model
for non-local reordering, in presence of other hypotheses such as “They would
legalize in Canada ...” which might also get good bi- and trigram probabilities.
The principle drawback of this model is its weak connection between the
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Phrase Pair < Fi, Ej > Backward Orientation Forward Orientation
sie würden – they would monotonic discontinuous
abstimmen – against discontinuous discontinuous

Table 2.7: Learned Parameters for Phrase-based SMT

sie würden für die Legalisierung der Abtreibung in Kanada abstimmen

reordering of the words “würden – would” and “abstimmen – vote”. The model
only learns how these phrases were translated with respect to their previous and
next phrase, and makes independence assumptions over previously translated
phrases. It does not take into account how previous words were translated and
reordered. The model does not learn that reordering of “abstimmen” is highly
probable after translation of “würden – would” in order to move the second
part of the German complex verb to its correct position. The further to the
right the word “abstimmen” is in the sentence the more difficult it is for the
lexicalized reordering model to move it to the correct position.

Figure 2.20: Long Distance Reordering

2.3.4 Hard Distortion Limit during Search

Phrase-based systems apply a hard distortion limit during search, restricting
the reordering to a window of 5-8 words. This decreases the decoding time from
being polynomial to linear and reduces the search complexity by throwing away
all possible word permutations beyond a fixed range. Previous research (Koehn
et al., 2005a) has shown that a distortion limit beyond 8 words drops the
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Hypotheses
They would vote to legalize abortion in Canada
They would abortion in Canada legalization vote
They would legalize the abortion vote in Canada
They would legalize vote abortion in Canada
They would legalize vote in Canada abortion
They would legalize in Canada vote abortion
They would in Canada vote legalize abortion

. . .

Table 2.8: Hypothesized Translations with the Orientations of würden and ab-
stimmen as shown in Table 2.7

translation accuracy because of the search errors. The lexicalized reordering
model is not good enough to filter out bad large-scale reorderings (Koehn,
2010).
The use of a hard reordering limit does not impact the translation between

language pairs such as French-English, Chinese-English, Arabic-English where
short distance movements suffice. However, the use of a hard limit is undesir-
able for German-English and Japanese-English translation, as these pairs have
significantly different syntactic structures. German is a verb-final language as
compared to English where the verb follows immediately after the subject. In
longer German sentences the verb can be easily separated from the subject by
more than 10-15 words. A hard reordering limit causes phrasal SMT to reject
such hypotheses even before trying them out in the search process. See Figure
2.20 for example. To move the German clause-final verb “stimmen – vote” to
its correct position behind the auxiliary “would”, it needs to jump over 15 Ger-
man words. Such long-range reorderings motivate syntax-based approaches to
machine translation.
Use of hard constraints is ultimately undesirable in machine translation and

any other machine learning problem, where the goal is to learn all the param-
eters from the data. A strong reordering model should be able to discard bad
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hypotheses and keep the good ones through soft constraints learned from the
data. Green et al. (2010) recently addressed this problem through better esti-
mation of the future cost of the linear distortion model. This enables them to
achieve the same or better translation accuracy (on different test sets) than the
baseline5 phrase-based system for a higher distortion limit of 15 words, for an
Arabic-to-English translation task. They also propose a discriminative reorder-
ing model to predict the word movement during translation. The reordering
distance αi−βi−1−1, as used in the linear distortion model, is discretized into
nine classes, the parameters of which are learned from the bilingual training
data.

2.3.5 Spurious Phrasal Segmentation

One of the inherent properties of phrase-based machine translation is its am-
biguous segmentation of the source sentence into phrases. Given a bilingual
sentence pair and its word alignment, a phrase-based system can learn a large
number of source segmentations. See Figure 2.21 for a sample phrase extraction
example. All phrases extracted for this example are exhaustively enumerated
in Table 2.2.
While it is not a problem to extract and store any number of phrases during

training, because of the now-days large computing power, spurious ambiguity
created by arbitrary phrasal segmentation is undesirable from the perspective
of modeling.
During decoding the spurious phrasal segmentation causes different compo-

sitions of the same phrasal unit to exist and compete with each other. The same
translation is hypothesized with different segmentations. This is illustrated in
Figure 2.22 where multiple segmentations of the phrase “inflation sollte unter
zwei prozent” compete with each other. This problem is substantially reduced,

5However, their baseline system does not include lexicalized reordering model. It is unclear,
whether the reported results are better or at least as good as the baseline system with
lexicalized reordering and lower distortion limit of 5, which has been shown to be optimal
for the Arabic-to-English translation task (Galley et al., 2009)
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Figure 2.21: Spurious Phrasal Segmentation – Training

but not completely eliminated, with the help of hypothesis recombination, a
technique to merge identical hypotheses (see Section 2.2.6). However, recombi-
nation can take place only after the hypothesis has been created and the values
for all its feature components have been computed, thus making the decoding
inefficient.
Phrasal segmentation is less of a problem for the phrase-based system in

practice because of the hard reordering limit, applied during decoding and
data sparsity, that forces the decoder to use only smaller phrases during test.
However, the removal of the hard reordering limit which is ultimately desired,
will cause a massive increase in the decoding time because of the multiple
segmentations of the same phrasal unit being tried over and over again with
different hypothesis extensions.
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Figure 2.22: Spurious Phrasal Segmentation – Recombined Hypotheses Rep-
resented with Dotted Lines

2.3.6 Deletions and Insertions out of Phrases

Handling of spurious words is one of the desirable feature in statistical machine
translation. Models for deleting German words (like the flavoring particle “ja”)
and insertion of English words (like auxiliary verb “does”) can help improve
translation.
Phrase-based systems handle deletion and insertion of words inside of phrases

but do not allow these operations outside phrases. This means that words can
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only be deleted during test if they appear in the same context as during train-
ing. Consider the example of short sentence “kommen Sie mit – come with me”.
German pronoun “Sie – you” always gets deleted when followed by a verb. The
phrase-based system learns the three phrases from this sentence shown in Fig-
ure 2.23. But none of these prove helpful when translating the test sentence
“lesen Sie bitte mit”, which is translated as “please read you with me” in-
stead of “please read with me”. The German word “Sie” translates to “you”,
an English word that it usually translates to. Deletion of “Sie” could not be
hypothesized because the phrase-based system does not learn and use phrases
like “Sie – null”.
It is arguable, whether out of context arbitrary deletion of source (German)

words, can be helpful. Li et al. (2008) showed an improvement of more than
1.5 BLEU points with a simple extension of the phrase-based system on a
Chinese-English task. They introduce an imaginary token ε (null word) on the
English side and learn a probability distribution p(ε|Fi), by counting phrase
pairs such as < Fi, ε > and calculating the MLE by dividing by counts of Fi.
Further improvements were achieved by using more sophisticated models that
involve using POS tags.
Spurious insertion of English words during decoding is a much more diffi-

cult problem than German word deletion. Notice that the problem of word
deletion is only to justify whether any German word appearing in the test
sentence can be dropped without translation. However, the English sentence
is hidden at test time, and is actually what we construct during decoding. It is
a non-trivial problem to identify which words to hypothesize as candidate for
insertion during decoding. Hypothesizing all unaligned English words observed
during training, increases the decoding complexity.

2.4 Hierarchical Phrase-Based Translation
Chiang (2007) extended the phrase-based translation model to include hierar-
chical phrases – phrases that contain sub-phrases to improve the inter-phrase
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Figure 2.23: German Word Deletion – Different Learned Phrases

reordering. The main goal was to enable the idea of hierarchical structure
(as previously advocated by Syntax-based MT, but not proven to be as effec-
tive as the phrase-based translation at that time), retaining key insights from
phrase-based MT i.e. learning large chunks of translation and the capacity to
memorize local dependencies.
The model is based on synchronous context-free grammar (SCFG) where

the translations are represented as rewrite rules such as:

X → < γ, α,∼>

where X is a non-terminal, γ and α are the source and target phrases,
containing terminals (strings) and non-terminals, and ∼ is one-to-one corre-
spondence between the nonterminal occurrences in γ and α. The SCFG rules
are extracted through a following sequence of steps:

• The word alignments are obtained by running GIZA++ in both direc-
tions

• Alignments are symmetrized

• Continuous phrases are extracted just as in the standard phrase-based
system

• For each continuous phrase, remove any sub-phrases within that phrase
and replace it with non-terminals
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For example the phrase pair “gegen ihre kampagne abstimmen – vote against
your campaign” in Figure 2.17, the following rules could be learned:

X → < gegen ihre kampagneX1, X1 against your campaign >

X → < gegen X1 kampagne X2, X1 against X2 campaign >

X → < gegen X1 kampagne X2, X1 against X2 campaign >

Extracting rules in this manner can result in a very large rule vocabulary
creating spurious ambiguity which is more severe in this case than traditional
phrase-based system. The decoder can produce the same output sentence
through different set of derivations having exactly same feature vector values.
This also results in slower decoding and more search errors. To avoid this, the
rule inventory is filtered using several constraints such as i) two non-terminals
can not occur adjacently on the source-side, ii) rules with more than two non-
terminals are removed iii) limit the rule size i.e. total number of terminals and
non-terminals in a rule to be 6.
The hierarchical phrase-based translation, however, departs from the left-to-

right stack-based decoding that produces English sentence linearly. Decoding
is done through CKY (Cocke-Kasami-Younger) parser using cube-pruning (See
Chiang (2007) for details).
By using rules with non-terminals the hierarchical phrase-based translation

system (Hiero), can handle both local and non-local dependencies through
the translation model and can also handle discontinuous units on source and
target-sides. However, SCFG-based systems such as Hiero have been recently
criticized for their inability to model certain types of alignments (Søgaard and
Kuhn, 2009; Søgaard and Wu, 2009). Hiero, for example can not independently
generate translation units, a, b, c, and d with the types of alignments shown
in Figure 2.24 (Galley and Manning, 2010). Phrase-based system can handle
(i) inside-out but unable to deal with (ii) cross-serial DTU and (iii) “Bonbon”.
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Figure 2.24: Alignments Not Handled By Hiero

2.5 Discontinuous Phrase-based SMT
In this section we discuss a recent advance in phrase-based machine translation
that addresses the first two drawbacks of the PBSMT (i) handling of non-
local dependencies and (ii) modeling of gappy units, discussed in the previous
section, that often motivate parsing-based approach to machine translation.
The principle weakness that triggers these problems is that traditional phrase-
based machine translation only extracts continuous phrases during training.
Because of this limitation the translation model can not learn long distance
dependencies with context. Recall the example shown in Figure 2.25. The
translation model can learn a large continuous phrase “gegen ihre kampagne
abstimmen – vote against your campaign” which is less useful during test or
a small, one word phrase “abstimmen – vote” which does not capture any
translation context.

Figure 2.25: Handling of Local Dependencies – Dotted lines = Word Align-
ments

Galley and Manning (2010) has recently addressed this problem by remov-
ing the limitation of extracting only continuous phrases. All continuous and
discontinuous phrases < Fi, Ej > are extracted that are consistent with the
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given alignment. A phrase pair is said to be consistent with an alignment A if
all German words in Fi have alignment points only with the words in English
phrase Ej and vice versa. Any German or English word in < Fi, Ej > can be
unaligned but there has to be at least one alignment point in the phrase. More
formally as described in the paper:

∀(x, y) ∈ A : x ∈ Fi ←→ y ∈ Ej

All discontinuous phrases extracted for this example are shown in Table 2.9.
The interesting ones are boldfaced.

English German
kampagne abstimmen vote X campaign

würden X abstimmen would vote
sie würden gegen ihre kampagne they would X against your campaign
würden gegen ihre kampagne would X against your campaign

ihre kampagne abstimmen vote X your campaign
würden gegen would X against

sie würden gegen they would X against
sie würden gegen X abstimmen they would vote against

gegen X abstimmen vote against
würden gegen X abstimmen would vote against
sie würden X abstimmen they would vote
sie würden gegen ihre they would X against your

gegen ihre X abstimmen vote against your
würden gegen ihre X abstimmen would vote against your

sie würden gegen ihre X abstimmen they would vote against your
würden gegen ihre would X against your

Table 2.9: Discontinuous Phrases in Figure 2.25 – X = Place holder for 1 or
more words

The decoding mechanism is based on the left-to-right decoding as used in
the standard phrase-based system. However, in order to produce phrases with
target-side discontinuities, the hypothesis extension is divided into two steps,
grow and consolidate. The first part of such a phrase is extended through a
grow operation, whereas all subsequent n−1 parts of it are produced with n−1
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consolidate operations. Each consolidate hypothesis extension operation will
simply generate the remaining isolated target-side phrases. For example when
translating the phrase-pair “würden gegen ihre – would X against your”, the
grow operation would produce “would” and isolate the second part “against
your” to be generated later. The decoder will then cover the phrase-pair “ab-
stimmen – vote” and then use the consolidate operation to produce the isolated
phrase.
The new model learns discontinuous phrases such as “würden X abstim-

men – would vote” capturing the non-local dependency which is helpful when
translating the test sentence “die menschen würden gegen meine außenpolitik
abstimmen”. Similarly learning phrases such as “gegen X abstimmen – vote
against” forms a template that could generalize to “gegen meine außenpolitik
abstimmen – vote against my foreign policies”. Useful templatic phrases can
also be learned on the English side. For example “würden gegen ihre kampagne
– would X against your campaign” would be useful when translating the test
sentence “sie würden gegen ihre kampagne protestieren – they would protest
against your campaign”. However, notice that the phrasal independence as-
sumption is still a problem for the phrase-based system. The phrase-based
system can either use the phrase “würden X abstimmen – would vote” or the
phrase “gegen X abstimmen – vote against” during decoding.
Now we will come back to the second problem of modeling discontinuous

word alignments such as “hat ... gelesen - read” as shown in Figure 2.18.
A traditional phrase-based system does not learn this unit independently of
the intervening context “er ein buch”. Instead it learns a phrasal unit “hat
er ein buch gelesen – he has read a book” which is less useful during test.
This problem is naturally solved in the new model that learns discontinuous
phrases. From the given training sentence, the model is able to learn discon-
tinuous phrases such as “hat X gelesen – read” which can be generalized to the
test sentence “dann hat er eine märchenbuch gelesen”. Another useful phrase
learned by the new model is “hat X ein X gelesen – read a”. The first gap can
be filled with any pronoun and the second gap can be filled with any object
noun.
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Also notice that the discontinuous phrase-based system can handle the cross-
serial DTU and “Bonbon” alignments shown in Figure 2.24 unlike hierarchical
phrase-based system. Galley and Manning (2010) in their results on Chinese-
to-English task show statistically significant improvements over Joshua (Li
et al., 2009), a hierarchical phrase-based and Moses, the standard phrase-
based system. Their results also show the Moses slightly outperform Joshua,
although Joshua uses both continuous and discontinuous phrases.

2.6 Chapter Summary
In this chapter we gave a comprehensive overview of the state-of-the-art phrase-
based system and its different components. We discussed the noisy channel
metaphor which rests as a foundation for statistical machine translation. We
gave a brief account on IBM models, starting with Model 1 which is based on
simple word replacement. Model 2 adds an absolute reordering model. Model
3 adds a fertility model. Model 4 returns to the challenge of reordering and
proposes relative reordering. Model 5 addresses the problem of deficiency. We
discussed the drawbacks of word-based models to motivate the phrase-based
model, showing benefits of using phrases over words as a unit of translation.
We mainly presented standard phrase-based SMT which is based on the

noisy-channel framework, in terms of translation model and phrase extraction.
We also briefly talked about different joint models for phrase-based SMT (i)
that are based on concepts that directly extract phrases from sentence-aligned
data through EM training or (ii) that are built on symmetrized word align-
ments.
We discussed the drawbacks of distance-based reordering, followed by an ac-

count of lexicalized reordering that considers word forms rather than indexes.
We discussed several variants of the lexicalized reordering as proposed in the
literature. We discussed that machine translation can be improved a lot by
integrating different sources of knowledge inside and outside of the SMT mod-
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els. To make this possible we have to shift from the generative paradigm to
log-linear modeling.
We discussed beam search as used in phrase-based decoders. We talked about

different aspects of search such as hypothesis extension, future cost estimation
and decoding complexity. By applying a pruning and hard reordering limit,
search complexity can be reduced from NP-complete to being linear.
At the end of the chapter we talked about some drawbacks of phrase-based

machine translation. Traditional phrase-based systems do not represent non-
local dependencies through the translation model. Modeling of gappy units
and spurious ambiguities is ignored. The reordering model is weak and can
not handle long distance reorderings effectively without relying on the language
model. Hard reordering limit is applied during decoding to reduce search errors
and make the decoding efficient. Removing the hard limit causes a performance
drop. Traditional phrase-based SMT extracts non-minimal translation units
during training which cause spurious ambiguities during training and decoding,
allowing multiple representations of the same German and English strings, with
different segmentations, to occur in the search space.
Lastly we discussed a major recent advance in phrase-based machine trans-

lation that removes the restriction of using continuous phrases and introduce
discontinuous German and English phrases. This enables the new phrase-based
model to learn non-local dependencies with context.
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N-gram-based SMT exists as an alternative to the more commonly used phrase-
based machine translation approach. While the two models have some com-
mon properties, they are substantially different in terms of translation units,
reordering and search. In this chapter we will discuss the details of N-gram-
based SMT, contrasting it with phrase-based machine translation. The model
is discussed in terms of translation modeling, reordering framework and search
strategy as used in the N-gram model. We discuss the useful properties of the
N-gram model that overcome some of the drawbacks of phrase-based machine
translation detailed in the previous chapter. We also mention the drawbacks
of the N-gram model that do not exist in the phrase-based approach.

3.1 Translation Model
N-gram-based SMT (Banchs et al., 2005; Mariño et al., 2006) is an instance of
a joint model that generates German and English strings together in bilingual
translation units called tuples. Tuples are essentially phrases but are minimal
translation units and can not be decomposed any further. The translation
model is an n-gram model which defines the probability of a sequence of tuples
as follows:

p(e, f, a) =
J∏
j=1

p(tj|tj−m+1...tj−1)

where each tuple tj =< Fj, Ej > couples German and English strings, m
indicates the amount of context used, a defines the alignment function between
the bilingual sentence pair < f, e >. Translation model is implemented as an
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N-gram model of tuples using SRILM-Toolkit (Stolcke, 2002) with Kneser-Ney
smoothing. A trigram model (m = 2) is found to be optimal in Mariño et al.
(2006) for Spanish-to-English and English-to-Spanish tasks.

3.1.1 Tuple Extraction

Tuples are extracted from the alignments obtained by running Giza++ in both
directions (from source-to-target and target-to-source) and then symmetrizing1

the alignments. However, the procedure to extract tuples is not the same as
applied in the standard phrase-based systems. Tuples are extracted with the
following constraints:

1. A bilingual sentence is segmented in such a way that monotonic chunks
are obtained i.e. in a tuple tj, Fj aligns with Ej.

2. No words inside a tuple are aligned to words outside the tuple.

3. A tuple is a minimal unit satisfying the above two conditions.

A Tuple is essentially a phrase-pair with the difference that it is a minimal
phrasal unit that can not be decomposed any further without violating the
criteria of monotonicity. Consider the bilingual sentence pair:

meistens ist die sache mit einer entschuldigung abgetan

mostly null the matter ends with an apology

Figure 3.1 shows the generation of German and English strings in 5 tuples.
Note that tuples are monotonically generated such that Fj (German words in
tuple tj) aligns with Ej (English words in tuple tj). All words Fj are aligned
only to the words inside Ej and vice versa. Lastly no tuple could be split any

1Mariño et al. (2006) performed a comparison between different symmetrization techniques
namely union, source-to-target and refined and found the “union” heuristic to give best
results for both Spanish-to-English and English-to-Spanish translation.
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further without violating the criteria of monotonicity. Notice that tuple t5,
can not be decomposed because of the crossing alignment “abgetan – ends”.
If we form a tuple tx =< abgetan, ends > then German and English words
are no longer generated in the same order. Because of the tuple extraction
conditions, only one segmentation is possible for each bilingual sentence pair
unlike in traditional PBSMT which extracts many phrasal units.

Figure 3.1: Tuple Generation

3.1.2 Crossing Alignments – Embedded Words

One of the main problems with the discussed formulation is tuples like t5 in
Figure 3.1 which result in a loss of smaller translation units that are embed-
ded inside the tuple. Embedded pairs in tuple t5 are “mit – with”, “einer –
an”, “entschuldigung – apology” and “abgetan – ends”. If any of these Ger-
man words appear in a test sentence, N-gram-based SMT would not be able
to translate them unless they appear in the exact sequence as observed during
training i.e. “mit einer entschuldigung abgetan” or they have been extracted as
smaller tuples in other training sentences. This loss of information is clearly a
drawback against phrasal SMT which extracts both smaller and larger transla-
tion units for translation. The problem is more aggravating for the translation
of language pairs like German-English that involve long range reorderings, re-
sulting in very long tuples that are less useful during test. Even in a language
pair like French-English with short reorderings this can cause problem. Con-
sider smaller translation tuples like “beauté noire – black beauty” that flip
noun and adjective. If “noire – black” always occurred as a modifier to a noun,
the N-gram model can not produce a translation for an unseen construction
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“l’encre noire – black ink”. Another daunting problem is that the collected
probability estimates are incorrect. Assume that out of 10 sentences where
“noire – black” appears, in 5 it appears with an inverted construction like “X
noire – black X”. The N-gram model is unable to collect the counts (noire ,
black) from all such sentences, resulting in incorrect estimates.
In order to handle this problem, a bilingual dictionary of embedded words is

appended to the tuple corpus as a unigram model (Mariño et al., 2006) . The
embedded tuples are given the same probability as assigned to the unknown tu-
ples by the SRI-Toolkit. Using embedded words to enhance the bilingual tuple
corpus is shown to be useful to alleviate the data sparsity problem (de Gispert
and Mariño, 2004) when the training data is small. This issue is more properly
addressed through linearization of the source sentence, which we will discuss
later.

3.1.3 Tuple Pruning

Larger tuples such as “mit einer entschuldigung abgetan – ends with an apol-
ogy” are less useful during decoding and their presence in the tuple corpus
may increase the look-up time, hence causing a drop down in decoding speed.
Dropping such tuples may not lead to a drop in the translation performance
but may lead to an improvement in decoding speed. Tuple pruning was in-
troduced with this perspective. A threshold value N is chosen and all tuples
whose frequency fall below that number are replaced by an unknown tuple to-
ken < unk >. For example the sentence pair shown in Figure 3.1 is represented
as:

< meistens−mostly >< ist−null >< die−the >< sache−matter >< unk >

As can be observed that unknown word token < unk > is learned with con-
text. This can sometimes be useful in translation of out-of-vocabulary (OOV)
words. Consider the following sentence pair:
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Musharraf sagte , dass

Musharraf has said that

Suppose that the tuple < Musharraf − Musharraf > occurs below a
certain threshold. The model replace it with the < unk > token. The SRI-
Toolkit instead learns a tri-gram such as:

< unk >< sagte ,−has said >< dass− that >

This can be useful when translating “Gilani sagte, dass” where the model
finds a tri-gram. Tuple pruning, however is mainly used as a tool to speed up
the decoding process. A value of N = 20 and N = 30 were found to suffice for
translation of Spanish-to-English and English-to-Spanish respectively

3.1.4 Unaligned Words

Unaligned words on the German side are handled by learning tuples such as
< ist − null > in Figure 3.1. This enables N-gram-based SMT to learn a
source word deletion model that can learn deletions in context by learning a
tuple sequence such as:

< meistens−mostly >< ist− null >< die− the >

A phrase-based system instead learns a phrase-pair such as “meistens ist
die – mostly the”. Similar tuples can also be learned for the unaligned words
on the English side. However, target-side spurious words can be problematic
during decoding. Spurious words on the German side pose no problem during
decoding because German sentence is given during decoding. On the contrary
the English sentence is hidden and is actually what we are searching for. Hy-
pothesizing all spurious English words observed during training increases the
decoding time significantly (See Section 2.3.6 for discussion).
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Figure 3.2: Unaligned English Words

A solution to handle this problem is to attach null-aligned English words
to the right or left neighbor tuples based on some decision factor. Different
strategies have been proposed to make the attachment decision. The simplest
approach is to attach the unaligned English word to the next tuple (right
tuple). A more principled choice is to attach left or right based on some lexi-
cal evidence. Lexical probabilities p(f |e) obtained from IBM Model 1 (Brown
et al., 1993) are used to decide whether to attach left or right (Crego et al.,
2005b; Mariño et al., 2006). See Figure 3.2 for example. Tuple t3 < null−be >
is required to be merged into tuple t2 or tuple t4. This is done by compar-
ing the product of the probabilities p(sollte|should) and p(sollte|be) with the
product of the probabilities p(unter|be) and p(unter|under). The attachment
with the better probability estimate is chosen as a merging tuple which in this
case is < sollte − should be >. An even sophisticated strategy based on POS
(Part-of-speech) entropy is proposed in Gispert and Mariño (2006). Forward
(pfPOS) and backward (pbPOS) POS distributions are estimated as:

pfPOS = p(POSEi+1|Ei−1, Ei)

= count(Ei−1, Ei, POSEi+1)
count(Ei−1, Ei)
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pbPOS = p(POSEi−1|Ei, Ei+1)

= count(POSEi−1 , Ei, Ei+1)
count(Ei, Ei+1)

where Ei is the source-null English word which is “be” in the example. Ei−1

and Ei+1 are the candidate English words to which Ei can attach. Forward
and backward entropies are estimated as:

Hx
POS = −

∑
POS

pxPOSlog(pxPOS)

where x = f or b for forward or backward POS entropy models respectively.
If Hf

POS > Hb
POS we append the source-null word to the previous English

word else we merge it with the following English word. The argument is that
if Hf

POS > Hb
POS then the word sequence Ei−1,Ei has been observed more

commonly in different contexts than the word sequences Ei,Ei+1.
A comparison of translation accuracies using three strategies is done for

the Spanish-to-English, English-to-Spanish and Arabic-to-English translation
task. The POS entropy model outperforms the other two strategies with sta-
tistically significant results. However, when other features are used with the
translation model in the log-linear framework the gains are smaller.
Gispert and Mariño (2006) also investigated the performance of the POS

entropy model for target-null words (unaligned words on German side) and
found that removing target-null words from the tuple corpus (by appending
to right or left tuples) cause a drop in translation accuracy. This validates
the hypothesis that handling of spurious words can be helpful in machine
translation.
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3.2 Reordering Model
Lack of reordering capability in the earlier N-gram-based SMT systems makes
them less useful for translating language pairs with different syntactic struc-
tures. Let us revisit the example from last chapter. Given the bilingual sen-
tence, and the word alignments shown in Figure 3.3, N-gram-based SMT ex-
tracts just one tuple containing the entire sentence pair. This occurs due to the
crossing alignment “noch weiter – further” which aligns the first word of the
German sentence to the last word of the English sentence. Such displacements
are quite common when translating from German to English where the verb
has to be reordered from the end of the sentence.

Figure 3.3: Symmetrized Word Alignments with Union

Notice that the N-gram translation model can not learn any dependencies
in such scenarios. The fall back approach of dealing with the embedded words
(see Section 3.1.2), appends translation units as unigram tuples, to the tuple
corpus and assigns all such units a uniform probability. Given the scenario,
N-gram SMT can not achieve a better performance than word-based models.
If the exact same sentence appears in test set, the decoder will not be able
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to produce the output sentence as observed during the training. The pruning
heuristic will prune out the only learned tuple because its frequency falls below
the threshold limit. The decoder only has embedded word units in its unigram
tuple inventory. The most likely output according to the translation model is
a monotonic sequence of tuples: “further go to to wish it would be just as
irresponsible”.
The ability to learn lexicalized reorderings is also desirable for the translation

of language pairs that exhibit short distance movements. Due to data sparsity
it is not possible to see all possible word sequences and word permutations.
Consider a short training sentence with the tuple segmentation as shown in
Figure 3.4. The reordering of “gegessen – eaten” is local to the tuple and is use-
ful merely when the exact same tuple appears during test. However if the test
sentence appears with a different noun such as “erdbeerkuchen – strawberry
cake” as in “er hat einen erdbeerkuchen gegessen”. The translation model does
not know how to reorder the verb “gegessen” anymore. In absence of any re-
ordering mechanism the most likely translation would be “he has a strawberry
cake eaten”. This is because the tuple sequences < hat− has >< einen− a >
and < einen − a >< erdbeerkuchen − strawberry cake > get good tuple bi-
gram probabilities. The language model also prefer the word sequence “has a”
more than “has eaten”.

Figure 3.4: Short Distance Reordering

3.2.1 Source Linearization and Tuple Unfolding

A reordering framework based on linearization of the source-side (German)
was proposed to address these problems (Crego et al., 2005c). The idea is to
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change the order of the German sentence so that it appears in the same order
as the English sentence. Linearization is a two step process:

1. All the words on the German side that are aligned to the same English
word(s) form a group and all the words on the English side that are
aligned to the same German word(s) form a group. The process is itera-
tively repeated unless no new groups are formed. Each group represents
a tuple.

2. Tuples are output maintaining the English word order.

See Figures 3.5 for an illustration of the linearization process. The translation
model is now estimated on the newly formed tuple corpus. The advantage of
linearization is dual. First it unfolds the embedded tuples alleviating the data
sparsity problem. Secondly the tuple-based translation model can now also be
used to score different word permutations.

Figure 3.5: Source Linearization - Two Steps

Tuple unfolding eliminates the crossing-alignments and now there is no need
for appending embedded words to the tuple corpus. See Figure 3.6 for the illus-
tration of source linearization of the example shown in Figure 3.4. The ordering
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of German words in tuple t3 is changed so that it appears in the same order as
its English counterpart. This enables the embedded words, initially blocked by
the crossing-alignment, to form tuples of their own. Tuple t3 splits into three
separate tuples. The second advantage is that the n-gram estimates obtained
from the tuple corpus now indirectly provide information on the reordering.
After translating the tuples < er − he > and < hat − has >, there is now a
supporting evidence in the translation model for the decoder to hypothesize a
tuple < gegessen− eaten >. The idea of linearization of source has also been
applied in other machine translation systems (Collins et al., 2005; Kanthak
et al., 2005).

Figure 3.6: Source Linearization of Example in Figure 3.4

3.2.2 Rewrite Rules

Hypothesizing all possible reorderings during decoding is not only computa-
tionally expensive but also results in more search errors. Despite the hard
reordering constraints, such as the distortion limit (reordering window of 5
words) and the reordering limit (allowing up to 3 jumps) (Crego et al., 2005c),
there is still a difficult search problem causing a performance drop as compared
to using regular tuples (without unfolding) and monotonic translation. Crego
and Mariño (2006) has reported translation accuracy to drop by more than a
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BLEU point for Spanish-to-English and English-to-Spanish tasks, when using
tuple unfolding with reordered search.
Crego and Mariño (2006) proposed the use of rewrite rules to guide the

search process, rather than trying all possible word permutations with brute-
force. Rewrite rules are extracted during the linearization of a German sen-
tence. A rewrite rule is composed of a left and right hand side. The left-hand
side is formed of German words in a tuple ti which is required to be unfolded.
Let the German words in the tuple ti have indexes 0, 1, . . . , n. The right hand
side of the rule is composed of the indexes of the German words in the tuple
ti after it is unfolded into smaller tuples. For example the tuple t3 in Figure
3.6, forms a rewrite rule such as:

eine pizza gegessen 7→ 2 0 1

This rule means that “gegessen” gets displaced to the beginning of the tuple
while the ordering of the other two words remains the same with respect to
each other. The idea of rewrite rules is to hypothesize only the reorderings
that have been observed during training. The search graph in decoding is built
on the base of rewrite rules. Each rewrite rule forms its own arc. Once all the
rules have been applied, the graph is searched monotonically with different
arcs. A graph for the given example is shown in Figure 3.7. The search graph
is instantiated with the monotonic path, the input sentence “er hat eine pizza
gegessen”. For the rewrite rule, observed during training and applicable to the
test sentence, the search graph is extended with an arc “gegessen eine pizza”.
As a result of this the search space is dramatically reduced.

Figure 3.7: Search Graph Extension
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POS-based Rewrite Rules

One major drawback of the rewrite rules based on word forms is that they
can not generalize well to unseen data. Coming back to the example sen-
tence “er hat einen erdbeerkuchen gegessen”. The learned rule is not applica-
ble to this example because of a different article “einen” and a different noun
“erdbeerkuchen”. While the brute force method will hypothesize reordering
“gegessen” after translating “er” and “hat”, the arc-based search mechanism
will rule out this possibility because it does not have a corresponding rule in
its inventory.
In order to remedy this problem and improve the generalization power of

the rewrite rules, POS tags are used instead of word forms. The above rule is
now recorded2 as:

DT NN VBN 7→ 2 0 1

This enables the N-gram-based SMT to generalize to unseen text during
decoding. However, POS-based rules are less accurate than their word-based
counterparts. The word sequence “eine pizza gegessen” will most certainly
translate as “eaten a pizza” or “ate a pizza” both satisfying the rule eine pizza
gegessen 7→ 2 0 1. However, it is easy to find a word sequence where the POS-
based rewrite rule would fail. See Figure 3.8 for example. The search graph
is extended for the word sequence “die Vereinbarung beendet” using the rule
DT NN VBN 7→ 2 0 1. According to this arc the best translation would be
“if terminated the agreement is”. The right translation is achieved using the
dotted arch which swaps “bendet” and “wird”.
In order to obtain an accurate search graph only reliable rules are used.

Rules are filtered based on the rule probability. All rules falling below the
cut-off threshold are dropped. Let X1, X2, . . . , Xn be the left hand side of
the rule composed of word-forms or POS tags and j1, j2, . . . , jn be the set of

2DT = Determiner, NN = Noun, VBN = Verb Past Participle

100



3 N-gram-based SMT

Figure 3.8: Search Graph Extension - Rule Fail

Figure 3.9: Rewrite Rules - Phrasal Chunks

relative indexes of a tuple ti which is unfolded during training. The reordering
probability (Crego and Mariño, 2006) is estimated as:

p(X1, X2, . . . , Xn 7→ j1, j2, . . . , jn) = N(X1, X2, . . . , Xn 7→ j1, j2, . . . , jn)
N(X1, X2, . . . , Xn)

Syntax Enhanced Rewrite Rules

Using POS tags still imposes a constraint on the order and number of tags
to be the same as observed during training. Thus the learned rule DT NN
VBN 7→ 2 0 1 can generalize to “einen Erdbeerkuchen gegessen” but not to
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Figure 3.10: Syntax Enhanced Reordering

“eine Menge von Butterkekse gegessen”, because of the additional number of
German words in the test sentence. Another rule such as:

DT NN IN NNS VBN 7→ 4 0 1 2 3

is required to hypothesize this reordering. POS-based rules can be effective
to handle very short distance reorderings that occur frequently, however long
distance reorderings that involve jumping over many words would raise sparsity
problems.
This problem can be solved by going to the next level of generalization

by using chunks or dependency parse trees, to form linguistic rules. Notice
the common pattern in the two examples in the Figure 3.9. At higher level
the reordering is being carried out by swapping the verb and noun phrases.
Therefore instead of learning rules based on POS tags, chunk level rules such
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as NP VP 7→ 1 0 can be learned.
The idea of using syntax trees (Crego and Mariño, 2007) to form rewrite

rules, is motivated by the need to perform long distance reorderings which can
not be captured by the POS tags because of data sparsity. The left hand side of
the rule is now composed of the syntactic tags. Consider Figure 3.10 for exam-
ple. In order to monotonize the German sentence the main verb “abstimmen”
must be reordered by a jump from index 9 to index 2. A sub-tree spanning
all the German words that are jumped over, is identified. In this case it is the
second verb phrase spanning “für ... abstimmen”. The left hand side of the rule
is composed of the syntactic category of each German word in the span along
with its root node. Root node denotes the German word (“abstimmen” in the
current example) which has to be moved in order achieve linearization. The
right hand-side specifies the relative indexes of the syntactic categories after
unfolding. The extracted rule for this example is:

IN DT NN DT NN IN NNP root 7→ 7 0 1 2 3 4 5 6

The surface rule is exactly the same as the POS-based rule. However, dif-
ferent levels of generalizations can be achieved by merging categories to form
bigger categories. See Figure 3.11 for different rules learned from the lineariza-
tion of “abstimmen”. Each rule provides a different level of abstraction. Learn-
ing generalized rules such as IN NP root 7→ 2 0 1 are helpful for learning
long distance reorderings. Crego and Mariño (2007) have shown significant
improvements using syntax-enhanced rules over their POS-based counterparts
for a Chinese-to-English translation task.

3.2.3 Handling of Gappy Units

Source Side Discontinuities

Linearization of the source-side (German), not only unfolds the embedded
tuples and introduces a reordering framework but also handles source-side
discontinuities inherently. Recall the procedure of unfolding. The first step
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Figure 3.11: Extracted Rules – Different Levels of Generalization
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Figure 3.12: Source-side Gaps

groups the German and English words in tuples such that each group contains
only German and English words that are aligned to each other and no words
from other groups align to the words in this group. This step eliminates any
German side discontinuity to produce a linear sequence. See Figure 3.12. Tuple
t2 contains the discontinuous translation unit “hat...gelesen – read”. Step-1
groups “hat” and “gelesen” together in a single group because they align to
“read”. This eliminates the discontinuity in the final output. The rewrite rule
learned along the unfolding procedure is:

VBZ PRP DT NN VBN 7→ 0 4 1 2 3

This rule can be successfully used during decoding for translation of the test
sentence “dann hat er eine märchenbuch gelesen”. But using a fixed number
and order of POS tags causes the same generalization problem as before.
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Figure 3.13: Target-side Gaps

Target Side Discontinuities

Target side discontinuities can not be enabled in the reordering framework so
far discussed. The method of linearization applied to the German side can be
used principally to unfold the English side and for enabling discontinuities.
However, the generation of English side can then no longer be done in a left-
to-right manner.
The so-far-discussed N-gram-based systems handle this by merging all the

groups, that appear between the two English words, together to form a single
group. See Figure 3.13 for illustration. Although the grouping stage bundles
“hinunterschüttete – poured down” in a separate tuple but this tuple can not
be output without violating the condition of maintaining the order of English
words. The order of English words can be maintained by extracting only one
tuple (See t3 in Figure 3.13) which merges all the tuples that exist within.
This method of merging tuples can turn into a big drawback when the

discontinuous English words are far apart. No useful tuple can be extracted.
Crego and Yvon (2009) propose a method to handle this by splitting German
words that are aligned to discontinuous English side words. Each German
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Figure 3.14: Handling Target Gaps Using Split Tokens

word Fi connected to several English words that are discontinuous is split into
n tokens where n is the number of discontinuities on the English side. Each
split token Fix aligns to one contiguous set of English words in the order left to
right. This step is introduced before step 1 which groups German and English
words into tuples. Each split token Fix now forms its own tuple. See Figure 3.14
for illustration. German word “hinunterschüttete” aligned to “poured...down”
is split into two tokens “hinunterschüttete1” and “hinunterschüttete2” such
that “hinunterschüttete1” now aligns with “poured” and “hinunterschüttete2”
aligns with “down”. Each instance of “hinunterschüttete” forms its own tuple.
Step 2 outputs the tuples in the order of the English sentence moving the tuple
“hinunterschüttete1 – poured” to the middle of the sentence after the tuple “er
– he”, thus maintaining the English sentence order.
Using split tokens unfolds the embedded tuples and provides a mechanism

of handling discontinuities on the output side. Similar to the reordering rules
split rules are also learned with POS tags and syntactic categories to generalize
well on the unseen test. However, the identity of the German token that splits
is maintained in these rules to prevent spurious generalizations. For example
the learned rule for the running example would be:

DT NN hinunterschüttete 7→ 21 0 1 22
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Figure 3.15: Syntax Aware Split Rules

More generalized rules can be obtained by using syntactic categories to
merge POS-tags as before. For example “den Drink – DT NN” can form a
noun phrase resulting in the rule shown in Figure 3.15.

3.2.4 Factored Bilingual Units

Using POS-tags and syntactic categories in rewrite rules helps improve the
ability to generalize. However, although using POS-based reordering rules en-
ables the decoder to hypothesize useful reordering patterns, the translation
model might not have any evidence to support such a reordering. See Figure
3.16. Although a POS-based reordering rule DT NN VBN 7→ 2 0 1 is learned
during tuple unfolding and is successfully applied to hypothesize the reorder-
ing “fabriziert” during test, the translation model estimated from the bilingual
corpus might not have any evidence to support this reordering if “fabriziert”
is an unknown word or not seen with this reordering pattern. The decoder
might translate “fabriziert” monotonically resulting in an output sentence “we
have a pizza fabricated”. This is likely to happen because the tuple sequence
< wir − we >< haben − have >< eine − a > is a commonly occurring tri-
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Figure 3.16: No Evidence of Reordering During Test

gram. The English-side language model also tends to favor “we have a” more
than “we have fabricated”. This problem can be alleviated by introducing POS-
tags and other bilingual linguistic categories directly in the translation model.
Crego and Yvon (2010) use POS tags in place of word forms when estimat-
ing the tuple corpus. The POS-based translation model computes an n-gram
probability over a sequence of POS-tags of tuples given as:

pbLM(e, f) ≈
J∏
j=1

p(tj|tj−m...tj−1)

where each bilingual tj =< pos(Fj), pos(Ej) > couples POS tags for German
and English strings, m indicates the amount of context used. Similar to the
translation model, the POS-tuple model is also implemented as an N-gram
model using the SRILM toolkit with Kneser-Ney smoothing. It is used as an
additional feature. Factored translation models have also helped phrase-based
machine translation to improve translation quality (Koehn and Hoang, 2007).
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3.3 Features Used in N-gram-based SMT
In this section we enumerate the features that are used in N-gram-based SMT
that are introduced to improve end-to-end translation accuracy. These feature
functions are combined in a log-linear model and are trained with MERT.

1. Target-side Language Model : English side language model based
on n-gram statistics estimated with the SRI-Toolkit (Stolcke, 2002) with
Kneser-Ney smoothing. 5-grams are typically used.

2. Translation Model : The tuple N-gram language model is the central
feature of N-gram-based SMT. It is estimated from the unfolded tu-
ple corpus. The translation probabilities are estimated using an n-gram
model. The tri-grams are typically used.

3. POS-tagged Target-side Language Model: Target-side language
model estimated from POS tags instead of word forms.

4. POS-tagged Source-side Language Model: German-side language
model estimated from POS tags instead of word forms. This is estimated
from the German side of the unfolded tuple corpus. This means that
German has been linearized according to the English order.

5. Lexical Translation Probabilities: These are exactly the same as
used in the phrase-based system. These probabilities are estimated from
the word-alignments based on IBM Model 1.

6. Word Bonus: Word bonus feature controls the bias of the target-side
language model against longer outputs.

7. Reordering Distance: This feature calculates the distance by which a
word is displaced after applying a reordering rule to add a new arc. The
distance is calculated as |j − R(j)| where j is the original index of the
German word Fj and R(j) its index after applying a reordering rule.
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3.4 Search
In this section we will discuss the most recent decoding mechanism (Crego
et al., 2011) for N-gram-based SMT. Like phrase-based and other SMT systems
N-gram-based SMT also tries to find an output that maximizes the weighted
sum of the feature components:

argmax
e

p(e|f) = argmax
e


J∑
j=1

λjhj(f, e)


hj(f, e) is the log-scaled probability of the feature components enumerated

in the previous section. Decoding for the N-gram system is a two step process:

1. Reordering the input sentence to form word lattices

2. Searching the word graph

3.4.1 Reordering

Given a German sentence the first step is to form a search graph. The search
space in N-gram-based SMT is not built dynamically during search but con-
structed in a preprocessing step. The input sentence is encoded as a word
lattice with the help of reordering rules learned during training. The input
sentence is POS-tagged or parsed (if syntactic rules are to be applied). Next
the search graph is initialized with the path that constitutes the monotonic
word order as it appears during test. The monotonic arc is extended with dif-
ferent word permutations obtained by applying reordering rules to any part of
the test sentence. Larger rules are applied first so that the process can repeat
recursively to the newly formed arcs. Rules can be filtered using rule probabil-
ity or size of the rule (number of German or English words). See Figure 3.17
for the illustration, when rules in Table 3.1 are applied (word forms are used
instead of POS-tags for simplicity). The larger rule “gestern hat er eine pizza
gegessen 7→ 1 2 3 4 5 0” is applied first which forms a new arc. The smaller
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Figure 3.17: Lattice-based Search Graph

rule “eine pizza gegessen 7→ 2 1 0” is then applied on both the monotonic
and initially reordered word permutations. The process is recursively repeated
until no new rules could be applied.

3.4.2 Searching the Word Graph

Once the word lattice has been established, the next step is to search for
the optimal path. All applicable tuples are extracted from the tuple corpus.
Because multiple German words can be part of a tuple and thus required to be
translated in single step, a segmentation step is required to group the words
into tuples. For example “hat” and “gegessen” can be translated independently
of each other as “has” and “eaten” respectively. But they can also translate as
a joint unit as “hat gegessen...ate”. In the latter case, “hat gegessen” should be
merged. The next step is to hypothesize English translations and calculate the
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Reordering Rule Permuted Sequence
gestern hat er eine pizza gegessen 7→ 1 2 3 4 5 0 hat er eine pizza gegessen gestern

hat er eine pizza gegessen 7→ 0 4 1 2 3 hat gegessen er eine pizza
eine pizza gegessen 7→ 2 1 0 gegessen eine pizza

hat er 7→ 1 0 er hat

Table 3.1: Reordering Rules

Figure 3.18: Abstract Translation Process

language model score. All other features can be estimated in advance before the
search step. See Figure 3.18 for illustration of the overall translation process.
Hypotheses are maintained in stacks. Each stack contains hypotheses that

translate the same German words. Therefore theoretically at most 2n stacks
are required for a German sentence containing n words. An alternative to this
configuration is to maintain stacks such that each stack translates the same
number of German words. This however, results in an unfair comparison, for
the decoder would prefer hypotheses that translate easier parts of the German
sentence and prune out the hypotheses translating the difficult parts. A future
cost estimate is required to overcome this problem (See Section 2.2.7 for fu-
ture cost estimation in phrase-based system). N-gram SMT models do not use
future cost estimation (Crego et al., 2011). Therefore arranging hypotheses in
2n stacks is necessary to prevent search errors. This solution is feasible con-
sidering that the search space in N-gram-based models is highly constrained
by applying only the pre-calculated orderings. Most of the 2n stacks are never
utilized to extend any hypothesis. The search space is further constrained by
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applying histogram pruning and limiting the tuple translation options to using
the n-best translation options for each sequence of German words. Recombi-
nation is also applied just as in the phrase-based system. All hypotheses that
cover the same German words and have the same language and translation
model contexts can be merged.

3.5 Comparison with Phrase-based SMT
In this section we will discuss the properties of N-gram-based SMT in com-
parison with the phrase-based system. We will highlight important difference
in terms of translation units, reordering approach and decoding.

3.5.1 Translation Model

The main difference between phrase-based and N-gram-based SMT is the sta-
tistical modeling of the translation units. Phrases are larger translation units
that memorize useful information such as local reordering, insertions, deletions,
handling of local gaps etc. Tuples on the other hand are minimal bilingual units
that do not represent the above phenomenon directly but through an n-gram
language model.

Independence Assumption

A drawback of the phrase-based system is that it makes independence assump-
tions over phrases. Because of the phrasal segmentation phrase-based system
can not capture dependencies in some cases. Assume that the sequences “er
hat – he has” and “hat gegessen - has eaten” appear very commonly in the
bilingual text but “er hat gegessen – he has eaten” is unseen. If this sequence
appears during test, the phrase-based system can not capture both of these
dependencies simultaneously. It has to choose one of the segmentations. On
the contrary the N-gram model can capture both these dependencies because
it does not make any independence assumption (other than context size) over
tuples and has access to the previously generated tuples.
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Figure 3.19: Training Example

Bilingual Context

Because of the phrasal independence assumption, phrase-based system ignores
the contextual information on the German side outside phrases. Contextual in-
formation on the English side is obtained through a English-side monolingual
language model. The reordering, is thus justified only through the language
model. On the contrary N-gram model makes use of bilingual contextual infor-
mation also taking into account which German words were previously trans-
lated. Feng et al. (2010) addressed this by adding a German-side language
model for the phrase-based system and showed improvements in BLEU score.
Words in the German sentences are first permuted to make their order identi-
cal to the English side. The German-side language model is added as a feature
in the log-linear equation.

Spurious Phrasal Segmentation

An advantage of N-gram-based SMT over phrase-based SMT is that tuples do
not overlap unlike phrases. Each bilingual sentence pair given the alignment
has exactly one possible segmentation. This enables the N-gram-based SMT to
avoid spurious segmentations during training. The number of translation units
extracted by the Phrase-based SMT is many times more than that extracted
by the N-gram-based system. See Crego et al. (2005a) and Crego et al. (2011)
for a comparison of extracted translation units and Section 3.5.3 for more on
the phrasal segmentation problem. Table 3.2 shows the extracted translation
units, for the sentence pair shown in Figure 3.19, under both models. Phrases
of up to 6 German words are extracted.
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Phrases Tuples
inflationsrate – inflation rate inflationsrate – inflation rate

sollte – should be sollte – should be
unter – under unter – under
zwei – two zwei – two

prozent – percent prozent – percent
gehalten – kept gehalten – kept
prozent – percent prozent – percent

gehalten werden – kept werden – null
inflationsrate sollte –

inflation rate should be
unter zwei – under two

unter zwei prozent – under two percent
zwei prozent – two percent
unter zwei prozent gehalten
– kept under two percent

unter zwei prozent gehalten werden
– kept under two percent

sollte unter zwei prozent gehalten –
should be kept under two percent

sollte unter zwei prozent gehalten werden –
– should be kept under two percent

inflationsrate sollte unter zwei prozent gehalten –
inflation rate should be kept under two percent

Table 3.2: Extracted Phrases and Tuples

Reordering

Memorizing phrases enables the phrase-based system to learn local reorderings.
However, non-local reorderings are not represented by the translation model
but handled through other models such as lexicalized reordering and the lan-
guage model. This is one of the drawbacks of the phrase-based model (See sec-
tion 2.3.1 for details). N-gram-based models learn reordering through source
linearization. Monotonizing German according to the English order enables
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Figure 3.20: Handling Local and Non-local Reorderings

the N-gram model to represent both local and non-local reorderings through
the translation model. Having observed the bilingual sentence pair shown in
Figure 3.20, during training, the phrase-based system learns the reordering of
“abstimmen – vote” only through the phrase “gegen ihre kampagne abstim-
men” which can not generalize to the test sentence “sie würden gegen meine
außenpolitik abstimmen”. On the contrary N-gram-based machine translation
can generalize to this test sentence by learning an unfolded tuple sequence
< sie − they >< würden − would >< abstimmen − vote >. If the reorder-
ing of “abstimmen” is hypothesized, the translation model for the N-gram
SMT has the evidence to support this reordering. The same is not true for the
phrase-based system.
However, by linearizing the source, N-gram-based SMT gives up on the true

representation of the data. The information that “abstimmen – vote” follows
discontinuously after “würden – would” is not represented in the translation
model. On the contrary hierarchical (Chiang, 2005) and discontinuous phrase-
based system (Galley and Manning, 2010) can represent this information as
“würden X abstimmen – would vote”. Moreover, the non-terminal “X” in the
discontinuous phrase gives more flexibility to “würden” and “abstimmen” to
be apart from each other by any number of words. In contrast the N-gram
model requires the test sentence to occur with the same sequence of POS-tags
as occurred during training, for it to fire a rule.
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Figure 3.21: Handling German-Side Discontinuities

Handling Discontinuities

The phrase-based system memorizes discontinuities both on the German and
English side inside of phrases. Discontinuities across phrases can not be handled
by the traditional phrase-based system (See Section 2.3.2). The N-gram-based
model handles discontinuous German side phrases through source linearization
and English-side discontinuities through split tokens. Source linearization helps
the N-gram model to represent both local and non-local source-side disconti-
nuities. From the training example of Figure 3.21 N-gram-based SMT can lin-
earize the German side and learn a tuple translation < hat . . . gelesen−read >
which can be used to generalize to the test sentence “dann hat er eine märchen-
buch gelesen”.
Discontinuities on the English side are represented in the N-gram model,

by splitting German words that align to discontinuous English words. This
approach has a minor pitfall. If the split tokens are apart by more than 3 tuples,
the translation model can not capture the dependency. Discontinuous phrase-
based systems in comparison represents the phrase as “hinunterschüttete –
poured X down”, modeling the dependency between “poured” and “down”
irrespective of the number of intervening words that separate them.

Handling Unaligned Words

The phrase-based system can memorize insertions and deletions of words inside
of the phrase but can not delete or insert words outside phrases. The N-gram-
based model can learn deletions of German words with context just as the
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Figure 3.22: Handling English-Side Discontinuities

phrase-based system but can also arbitrarily delete words in unseen contexts
which can be helpful.
The phrase-based system can represent unaligned English words inside of

phrases but N-gram models can not do the same, because of the minimal tuple
restriction. Unaligned English words are attached left or right as a preprocess-
ing step thus losing one of the dependencies. Consider a bilingual chunk “A
C – a b c” (capital letters align only with their corresponding small letter).
The unaligned target word “b” either attach to “a” to form a tuple “A – a b”
or to “c” to form a tuple “C – b c”. On the contrary the phrase-based system
preserves both attachment options by extracting two phrases “A - a b” and
“C - b c”.

3.5.2 Reordering Framework

The reordering models used in phrase-based and N-gram-based SMT are not
strictly part of these models, meaning one can be used inside another frame-
work. Ideas of one paradigm have been borrowed by the other. Lexicalized
reordering has been implemented for N-gram models (Crego and Yvon, 2010).
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Similarly unfolding of source has been experimented in a phrase-based system
(Feng et al., 2010). In this section we compare these two reordering mechanism.
N-gram-based SMT couples reordering and search with the help of POS-

based rewrite rules. Phrase-based SMT hypothesizes all possible reorderings in
a fixed reordering window of 5-8 words. A major drawback of the N-gram-based
approach is that search is only performed on a small number of reorderings that
are pre-calculated on the source side independently of the target side. Often,
the evidence for the correct ordering is provided by the target-side language
model (LM). In the N-gram approach, the LM only plays a role in selecting
between the pre-calculated orderings.
Secondly, the standard N-gram model heavily relies on POS tags to hypothe-

size reorderings. This limits the N-gram model to be used only for the language
pairs for which POS-tags are available. Using POS tags improves the ability
to generalize , however, POS-based rules still face data sparsity problems spe-
cially for long distance reordering. Recall our discussion from section 3.2.2
that motivates syntax-based rules, a POS rule such as DT NN VBN 7→ 2 0 1
can generalize to “einen Erdbeerkuchen gegessen” but not to “eine Menge von
Butterkekse gegessen”, because of the additional number of German words in
the latter sequence. Despite that both reorder “gegessen” over a noun phrase.
This problem is addressed by using syntactic trees which are only available for
a few language pairs.
Data sparsity in POS sequences also hinder the N-gram model from hypoth-

esizing source-side discontinuities. Recall our discussion on source-side gaps
from Section 3.2.3. A rule such as VBZ PRP DT NN VBN 7→ 0 4 1 2 3 can
generalize to reorder “gelesen” in the sequence “hat er ein Buch gelesen” but
can not generalize to “er hat ein Buch gelesen” because of different number of
words. A different POS rule would be required for a different number of words.
If a rule fails to trigger, N-gram model can not obtain an arc that monotonize
“hat” and “gelesen”. Consequently the following step that segments “hat gele-
sen” into a single unit can not execute. See Figure 3.18 in Section 3.4.2 for a
similar example. For the segmentation module to collapse “hat gegessen” as a
single unit, it must first be reordered to its correct position following “hat”. If
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the POS rule fails, then “hat gegessen” can not collapse and the decoder can
not hypothesize a tuple “hat gegessen - ate”. Consequently “hat” translates to
“has” and “gegessen” translate to “eaten”. However, “hat...gegessen - ate” is
the right translation for the given example.
Similarly split rules for handling target-side discontinuities are based on

POS-tags and will have the same problem. Refer to Figure 3.22(a) again. The
captured rule “schalten PRP DT JJ NNS 7→ 01 1 2 3 4 02” can not generalize
to “schalten sie ihr handy aus – turn your cellphone off”. If the POS-rule fails
then the decoder can not hypothesize splitting “schalten” and is unable to
produce “turn” and “off” discontinuously but only monotonically translating
as “turn off your cell phone” which is a more acceptable translation but it is
easy to find an example where the resulting output is undesirable. Consider
translating from English to German. In a sentence pair “you are looking good
– sie sehen gut aus”. The verb “looking” aligns to “sehen...aus”. To generate
the discontinuous tuple “looking” must be split to “looking1” and “looking2” so
that “looking1” produces “sehen” and “looking2” generates “aus”. If the split
rule fails the decoder translates “looking” to “suchen”.
The reordering mechanism of the N-gram model, however is more infor-

mative than the lexicalized reordering model because it takes into account
previously translated German and English words. On the contrary the lexical-
ized reordering model merely records orientation of each phrase or translation
unit with respect to the previously translated phrase without taking previous
translations into account. See Section 2.3.3 for a complete discussion on the
drawbacks of the lexicalized reordering model.

3.5.3 Decoding

The decoding framework of N-gram-based SMT is fairly different than that of
the phrase-based system. In this section we enumerate these differences.
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Search space

Search space in phrase-based SMT is built dynamically. All possible reorderings
within a window of 5-8 words are hypothesized. On the contrary the search
space in the N-gram-based SMT is built as a preprocessing step using POS-
based rules. This makes the decoding space extremely compact contributing
towards efficiency. However, search is only performed on a small number of
reorderings that are pre-calculated on the source side independently of the
target side. Often, the evidence for the correct ordering is provided by the
target-side language model (LM). In the N-gram approach, the LM only plays
a role in selecting between the pre-calculated orderings.

Spurious Phrasal Segmentation

The search space in N-gram-based SMT is also reduced by the fact that only
minimal translation units are hypothesized. This also helps the N-gram model
to avoid spurious segmentations in the search graph. In comparison different
compositions of the same phrasal unit exist and compete with each other in
the phrase-based system (See Section 2.3.5). See Figure 3.23 for decoding of
the test sentence “inflation sollte unter zwei prozent” under both models (only
monotonic paths are shown). Because the N-gram model uses only minimal
translation units, there is only one possible segmentation (shown at the bot-
tom of the figure). On the contrary Phrase-based SMT produces the exact
same output with different possible segmentations. Although this problem is
eased with recombination, however, recombination can take place only after
the hypothesis has been created and the values for all its feature components
have been computed, thus making decoding inefficient.

Using Phrases verses Tuples in Search

Using tuples during search as compared to phrases has a distinct drawback.
Phrases are larger translation units that capture more dependencies. An N-
gram model can capture the same dependencies by using multiple tuples. This
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Figure 3.23: Comparison of Search - Phrase-based verses N-gram-based SMT
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however, has to occur in several steps during decoding resulting in a difficult
search problem. Consider the German idiom “nach meine meinung - in my
opinion”. The phrase-based decoder can translate it as a single phrase and
place it on stack j + 3 where j represents the current stack. In comparison
N-gram model translates this with three tuples < nach − in >< meine −
my >< meinung − opinion >. Because “in” is not a common translation
of the German word “nach”, which usually translates to “after” or “to”, it
will be ranked quite low in the stack until the following tuples < meine −
my >< meinung − opinion > appear in the subsequent stacks. See Figure
3.24 for an example. In order for < nach − in > to survive pruning it must
appear in the N-best list of hypotheses in the stack it is placed. N-gram models
might thus require a higher beam size to prevent the pruning of the hypothesis
that translates “nach” to “in”. Costa-Jussà et al. (2007) reports a significant
drop in the performance of N-gram-based SMT when a beam size of 10 is
used instead of 50 in Spanish-to-English and English-to-Spanish experiments.
In comparison, translation accuracy of phrase-based SMT remains the same
when varying the beam size between 5 and 50. Koehn and his colleagues have
also repeatedly shown that increasing the Moses stack size from 200 to 1000
does not have a significant effect on translation into English, see (Koehn and
Haddow, 2009) and other shared task papers.

Reordering Limit

Unlike Phrase-based SMT, the N-gram model does not explicitly impose a
hard reordering limit i.e. allowing reordering only in a fixed window of 5-8
words. But this limit is implicitly imposed by restricting the rewrite rules
to have up to 6 POS tags in the left hand side of the rules. Because each
POS tag represents exactly 1 German word, N-gram model, like phrase-based
SMT can only do reordering within a fixed window. Using larger rewrite rules
introduces sparsity problems. The N-gram model, therefore, like phrasal SMT
fails to reorder “stimmen” in Figure 3.25 which requires a jump over 15 German
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Figure 3.24: Comparison of Search - Phrases vs. Tuple Placement on Stack
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Figure 3.25: Long Distance Reordering

words. See Section 2.3.4 for the discussion of hard-distortion limit in phrase-
based SMT.

3.5.4 Drawbacks of N-gram-based SMT

In this section we summarize the drawbacks of the N-gram-based SMT as
discussed in comparison with Phrase-based SMT in the previous section.

1. By linearizing the source, N-gram-based SMT throws away useful infor-
mation about how a particular word is translated with respect to the
previous word. This information is rather stored in form of rewrite rules.
However, because POS tags are used instead of word forms, a rewrite
rule might fail to retrieve the reordering observed during training.

2. Using split tokens to represent target-side discontinuities introduce spu-
rious representations of a German token that aligns to the discontinuous
English-side words. Moreover when the tuples representing discontinu-
ous units are further apart than 3 tuples the dependency can not be
captured.

3. Unaligned words on the English-side are handled through a post-processing
heuristic that attach unaligned English words to the left or right neigh-
boring word. One of the dependencies is lost as a result of the decision.

4. Standard N-gram SMT relies heavily on POS-tags. POS-based rewrite
rules represent a fixed number of German words and can not generalize

126



3 N-gram-based SMT

to long-distance reordering. Re-usability of these rules is hampered by
the problem of data sparsity. If a rule fails to trigger the N-gram model
can not hypothesize a particular phenomenon such as reordering and
handling source or target-side words.

5. The N-gram model hypothesizes for the pre-calculated word permuta-
tions based only on the source-side words. Often the evidence of correct
reordering is provided by the target-side language model. All potential
reorderings that are not supported by the rewrite rules are pruned in the
pre-processing step.

6. Using tuples presents a more difficult search problem than that in phrase-
based SMT. A hypothesis that, if allowed to continue might turn out
to produce the best translation in the final stack, might rank very low
in the initial stacks and may get pruned. This is likely to occur when
translating idioms and phrases where individual words do not have their
literal meanings.

7. Using POS-tags imposes an implicit constraint of reordering within a
window of 6 or less words preventing the N-gram model to hypothesize
long range reordering which requires larger jumps.

3.6 Chapter Summary
In this chapter we gave a comprehensive overview of a state-of-the-art N-
gram-based system and its component features. N-gram SMT is an instance
of a joint model. Translations are generated as bilingual units called tuples.
Tuples are minimal translation units that encapsulate source and target infor-
mation and are generated so that a unique and monotonic segmentation of a
bilingual sentence is produced. To unfold the embedded tuples, linearization of
the German-side is done. Linearization of the source also enables the N-gram
model to handle local and non-local dependencies such as long distance reorder-
ing, German-side discontinuities etc. English-side discontinuities are handled
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using split tokens. The decoding framework of the N-gram model is based on
POS-based rewrite rules, extracted during training. Only pre-calculated or-
derings are hypothesized during search. This leads to a compact search graph
contributing towards efficient decoding. The N-gram model has several advan-
tages over phrase-based model. Using bilingual units provides mutual context.
The N-gram model does not have a spurious phrasal segmentation problem.
However, using smaller translation units makes the search problem more dif-
ficult causing more search errors. A major disadvantage of the N-gram model
is that it is a pre-ordered approach. Not all possible word permutations are
hypothesized during search. Secondly the search graph is constructed with
POS-based rewrite rules which can only capture short-distance reorderings.
Both approaches have their pros and cons. In the next chapter we propose a
mechanism to capture the benefits of both techniques.
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4 A Joint Sequence Translation
Model with Integrated
Reordering

The last two chapters were spent going through the details of the state-of-the-
art Phrase-based and N-gram-based SMT models. We discussed the pros and
cons of each model. In this chapter we present a novel operation sequence model
that tries to capitalize on the advantages of both approaches and aims at recti-
fying some of the mentioned weaknesses. In the first few sections we will discuss
our model in terms of translation modeling (translation units and reordering
framework etc), different supporting features and the decoding strategy. In
the second half we perform an empirical evaluation comparing our model out-
puts with the state-of-the-art phrase-based system Moses1, Phrasal (Cer et al.,
2010) 2, a discontinuous phrase-based system and the state-of-the-art N-gram
system Ncode.3

4.1 Introduction
We present a novel generative model that explains the translation process as
a linear sequence of operations which generate a source and target sentence
in parallel. Possible operations are (i) generation of a sequence of source and

1http://www.statmt.org/moses/
2http://nlp.stanford.edu/phrasal/
3http://www.limsi.fr/Individu/jmcrego/bincoder/
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target words (ii) insertion of gaps as explicit target positions for reordering op-
erations, and (iii) forward and backward jump operations which do the actual
reordering. The probability of a sequence of operations is defined according to
an n-gram model, i.e. the probability of an operation depends on the n−1 pre-
ceding operations. Since the translation (generation) and reordering operations
are coupled in a single generative story, the reordering decisions may depend
on preceding translation decisions and translation decisions may depend on
preceding reordering decisions. This provides a natural reordering mechanism
which is able to deal with local and long-distance reorderings in a consistent
way. Our approach can be viewed as an extension of the N-gram SMT ap-
proach but N-gram SMT does reordering as a preprocessing step and not as
an integral part of a generative model.

4.2 Generative Story
The generative story of the model is motivated by the complex reordering in
the German-to-English translation task. Our model, like the N-gram model, is
an instance of a joint source channel model. The English words are generated
in linear order4 while the German words are generated in parallel with their
English translations. Mostly the generation is done monotonically. Occasion-
ally the translator jumps back on the German side to insert some material
into a gap that was inserted earlier. Each inserted gap acts as a designated
landing site for the translator to jump back. After this is done, the translator
jumps forward again and continues the translation. We will now, step by step,
present the characteristics of the new model by means of examples.

4Generating the English words in order is also what the decoder does when translating
from German to English.
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4.2.1 Basic Operations

The generation of the German translation Peter liest of the English sen-
tence Peter reads is straightforward because it is a simple 1-to-1 word-based
translation without reordering:

• Generate “Peter – Peter”

• Generate “liest – reads”

The translation Peter reads – Peter liest also, requires the insertion of an
additional German word at the end. Conversely, the translation Peter reads
then – Peter liest requires the deletion of an untranslated English word.

4.2.2 Reordering Operations

Let us now turn to an example which requires reordering. Consider the follow-
ing example:

Figure 4.1: Reordering Example

The generation of this sentence in our generative story could proceed as
below:

• Generate “er – he”

• Generate “hat – has”

The down arrow (↓) represents position of the translator i.e. the position of
the German word after the previously translated German word.
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The sequence is so far monotonic because the German words generated so far
are in the same order as the English words. However, the next generation step
requires a reordering. In order to generate the German word “gegessen”, the
translator needs to jump over the intervening words “eine” and “Pizza”. A gap
is first inserted on the German side, followed by the generation of “gegessen –
eaten”.

• Insert Gap

• Generate “gegessen - eaten”

The inserted gap acts as a place-holder for the skipped German words. When
the translator requires to generate any of the skipped words it jumps back
to the open gap and proceeds with the generation. After the generation of
“gegessen – eaten”, the translator must generate the skipped words “eine – a”
and “Pizza – pizza”. The generative story proceeds as below:

• Jump Back

• Generate “eine – a”

• Generate “Pizza – pizza”

The backward jump operation makes the translator jump to the open gap
and close it. The translator then proceeds monotonically with the generation
of “eine – a” and “Pizza – pizza”.
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Figure 4.2: Sub-ordinate German-English Clause Pair

Complex Reorderings: Multiple gaps can exist at a single time. The trans-
lator decides based on the next English word to be covered which open gap
to jump to. Figure 4.2 shows a German-English subordinate clause pair. The
generation of this example is carried out as follows:

• Insert Gap

• Generate “nicht – do not”

The inserted gap acts as a place holder for the German words “über konkrete
Zahlen” that are skipped to be generated later. The next English cept in the
order is “want to”. But first, another gap is required to be inserted before the
generation of “wollen – want to”. This gap serves as the place holder for the
German word “verhandeln”.

• Insert Gap

• Generate “wollen – want to”

The two open gaps are the landing sites for the “backward jump” operation.
When the translator decides to generate any of the skipped words it jumps
back to one of the open gaps. The “backward jump” operation closes the gap
that it jumps to. The translator proceeds monotonically from that point until
it needs to jump again. The generation proceeds as follows:
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• Jump Back

• Generate “verhandeln – negotiate”

Lastly the translator jumps back to the other open gap and generates the
remaining German and English words.

• Jump Back

• Generate “über – on”

• Generate “konkrete – specific”

• Generate “Zahlen – figures”

Recursive Reorderings: Some reorderings require recursively inserting a gap
within a gap. Consider the translation of another German-English subordinate
clause pair shown in Figure 4.3. The generation requires a long distance re-
ordering of the verb phrase “senken wird” and an internal reordering of “senken
– cut” and “wird – will”. After the generation of “dass – that” “die – the” and
“EZB – ECB”, the translator proceeds by inserting a gap for the skipped
German words followed by the generation of “wird – will”.
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Figure 4.3: Complex Reordering Pattern in German-English Translation

• Insert Gap

• Generate “wird - will”

The translator continues by jumping back to the open gap. But before it
generates “senken – cut”, another gap has to be inserted. Recall from the dis-
cussion above that a “jump back” operation closes the gap it jumps to. Because
“senken” was not the first word of the gap. A new gap has to be inserted within
the closing gap for the words “die Zinsen zweimal” to be generated later. The
translator then continues with the generation of “senken – cut”. After generat-
ing “senken – cut” the translator will jump back to the open gap and generate
the skipped words “die Zinsen zweimal”.

• Jump Back

• Insert Gap

• Generate “senken – cut”
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4.2.3 Discontinuous Translation Units

Now we discuss how discontinuous cepts can be represented in our generative
model. The insert gap operation discussed in the previous section, can also be
used to generate discontinuous source cepts. The generation of any such cept
is done in several steps. See the example in Figure 4.4. The generation of the
gappy cept5 “hat...gelesen – read” can be done as follow:

Figure 4.4: Discontinuous German-side Cept

• Generate “er – he”

• Generate “hat...[gelesen] – read”

• Insert Gap

• Continue Source Cept

After the generation of “er – he”, the first part of the German complex verb
“hat” is generated as an incomplete translation of “read”. The second part
“gelesen” is added to a queue to be generated later. A gap is then inserted for

5A cept is a group of words in one language translated as a minimal unit in one specific
context (Brown et al., 1993).
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the skipped words “ein” and “Buch”. Lastly the second word (“gelesen”) of the
unfinished German cept “hat...gelesen” is added to complete the translation of
“read”.
Discontinuous cepts on the English-side can not be generated orthogonally

because of the fundamental assumption of the model that English will be
generated from left-to-right. This is a drawback of our approach which we will
discuss later.

4.2.4 Insertions and Deletions

Unaligned German and English words can be inserted or deleted through spe-
cial operations “Generate Source Only” and “Generate Target Only”. See Fig-
ure 4.5 for example. The German and English pronouns “Sie” and “me” are
unaligned. The bilingual sentence pair can be generated with the following
sequence:

Figure 4.5: Insertion and Deletion

• Generate “kommen – come”

• Generate Source Only “Sie”

• Generate “mit – with”

• Generate Target Only “me”

4.2.5 Formal Definition of Operations

In this section we define the operation set formally. Our model uses five trans-
lation and three reordering operations which are repeatedly applied in a se-
quence. The following is a formal definition of each of these operations:
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• Generate (X,Y) The source and target sentences are generated through
the Generate(X,Y) operation. X and Y are German and English cepts
respectively, each with one or more words. Words in X (German) may
be consecutive or discontinuous, but the words in Y (English) must be
consecutive. This operation causes the words in Y and the first word
in X to be added to the English and German strings respectively, that
were generated so far. Subsequent words in X are added to a queue to
be generated later. All the English words in Y are generated immedi-
ately because English is generated in linear order, for example Generate
(Inflationsraten, inflation rates). The generation of the second (and sub-
sequent) German word in a multi-word cept can be delayed by gaps,
jumps and the Generate Source Only operation defined below.

• Continue Source Cept: The German words added to the queue by the
Generate (X,Y) operation are generated by the “Continue Source Cept
operation”. Each Continue Source Cept operation removes one German
word from the queue and copies it to the German string. If X contains
more than one German word, say n many, then it requires n translation
operations, an initial Generate (X1...Xn, Y )6 operation and n − 1 Con-
tinue Source Cept operations. For example “kehrten...zurück – returned”
is generated by the operation Generate(kehrten zurück, returned), which
adds “kehrten” and “returned” to the German and English strings and
“zurück” to a queue. A Continue Source Cept operation later removes
“zurück” from the queue and adds it to the German string.

• Generate Source Only (X): The string X is added at the current po-
sition in the German string. This operation is used to generate a German
word X with no corresponding English word. It is performed immediately
after its preceding German word is generated. This is because there is no
evidence on the English-side which indicates when to generate X. Gen-

6Note that the dots (...) within “X1...Xn” do not represent discontinuity in our case but
only that they are two separate source words which may be adjacent or discontinuous.
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erate Source Only (X) helps us learn a source word deletion model. It is
used during decoding, where a German word (X) is either translated to
some English word(s) by a Generate (X,Y) operation or deleted with a
Generate Source Only (X) operation.

• Generate Target Only (Y): The string Y is added to the current
position in the English string. Because English is generated left-to-right,
Generate Target Only (Y) is carried out after the (Y −1)th English word.
Generate Target Only (Y) operation is symmetrical to its counter part
Generate Source Only (X). While it might be useful to learn a target
word insertion model for the word alignment task, hypothesizing inser-
tions during decoding is a challenging task. Both German and English
sentences are available to the word alignment task. However, the English
sentence is hidden to the decoder and is actually what the decoder tries
to construct. Because there is no evidence in the source sentence to indi-
cate which English words are the most probable candidates for insertion,
inserting the right English words is a non-trivial task. Hypothesizing all
unaligned English words observed during training, increases the decod-
ing complexity. We will return to this challenge later and propose a way
to address this problem.

• Generate Identical: This operation adds the same word at the current
position in both the German and English strings. The Generate Identical
operation is used during decoding for the translation of unknown words.
The probability of this operation is estimated from singleton German
words that are translated to an identical string. For example, for a tuple
“Portland – Portland”, where German “Portland” was observed exactly
once during training, we use a Generate Identical operation rather than
Generate (Portland, Portland).

We now formally define the set of reordering operations used by the gener-
ative story. Reordering has to be performed whenever the German word to be
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generated next does not immediately follow the previously generated German
word.

• Insert Gap: This operation inserts a gap which acts as a place-holder
for the skipped words. A gap represents a set of continuous German
words that the translator decides to jump over and leaves to generate
later during the translation. Whenever the translator decides to cover
any of these skipped words it has to jump back to the open gap. There
can be more than one open gap at a time.

• Jump Back (W): This operation lets the translator jump back to an
open gap. It takes a parameterW specifying which gap to jump to. Each
open gap has an id starting from 1...n such that the gap closest to the
right-most German word covered so far (Z) gets the lowest id i.e. 1 and so
on. Jump Back (1) jumps to the closest gap to Z, Jump Back (2) jumps
to the second closest gap to Z, etc. Referring back to the example shown
in Figure 4.2 (Page 133), at an intermediate step during generation the
example has two open gaps:

The right-most German word so far covered is “wollen”. The gap closest
to “wollen” is the one that represents the word “verhandeln”. The other
gap that is on the left represents the words “über konkrete Zahlen”. If
the translator decides to cover “verhandeln” it will perform a Jump Back
(1) operation. If the translator decides to cover “über” , “konkrete” or
“Zahlen”. It will perform a Jump Back (2) operation. The gap ids are not
fixed but dynamically updated after each Insert Gap and Jump Back (W)
operation because the former inserts a new gap and the latter closes one.
The jump back operation can not directly jump to any of the German
words represented by that gap. It always jumps to the first word repre-
sented by that gap. However, if the translator does not intend to generate
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the first word of that gap it has to insert another gap. Referring back to
the example shown in Figure 4.3, at an intermediate step during genera-
tion the translator decides to jump back to the open gap that represents
the German words “die Zinsen zweimal senken”. Although the translator
intends to generate “senken – cut”, it first needs to insert another gap
representing the new set of skipped words “die Zinsen zweimal”.

• Jump Forward: After a translator jumps to any open gap and covers
any or all of the German words represented by that gap, it may want
to jump to another gap or to the right-most German word so far cov-
ered (Z). The Jump Forward operation makes the translator jump to Z.
Consider the example in Figure 4.6.

Figure 4.6: An Example to Illustrate Jump Forward Operation

The translation is carried out with the following sequence of operations:

– Generate(dies,this)

– Insert Gap

– Generate(nicht, does not)

– Generate Source Only (,)

At this point, the (partial) German and English sentences look as follows:

The sequence proceeds as follows:

– Jump Back(1)

– Generate(bedeutet, mean)
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At this point, the (partial) German and English sentences look as follows:

The translator now needs to jump forward to the right of the sentence
Z and cover the German word “dass”. The sequence proceeds as :

– Jump Forward

– Generate(dass, that)

The Jump Forward operation is executed when the previously covered
German word (j) is not the right most German word so far covered
and the translator intends to cover a German word that is to the right
of the previously covered German word and is not following that word
immediately. Thus in order to jump to Z or any open gap to the right
of the previously covered German word (j), a Jump Forward operation
has to be performed. The two scenarios are illustrated in Figure 4.7.

Figure 4.7: Jump Forward Scenarios

The arrow-sign ↓ denotes the position after the previously covered Ger-
man word. The next German word to be covered is shown inside a
diamond-shaped box. Notice that in both cases j < Z i.e. the current
position of the translator is before the right-most German word so far
generated and the word to be covered next is at the right of, and not
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immediately following the word just covered. In the first scenario (Figure
4.7 a), the translator performs a Jump Forward to the position after “C”
and generates “D”. In the second scenario (Figure 4.7 b), the translator
performs a Jump Forward to the position after “E” and then executes a
Jump Back(1) to generate “D”.

4.2.6 Conversion Algorithm

In this section we will present an algorithm that converts an aligned bilingual
sentence pair, to a sequence of operations discussed in the previous section.
Before presenting the algorithm let us sum up the basic considerations from
the previous section given below. A formal algorithm for converting a word-
aligned bilingual corpus into an operation sequence is presented in Algorithm
1. At the end of the section we will dry-run a sample example and show a step
by step generation of a German/English sentence pair, giving the translation
operations and the respective values of the index variables at each step.

• The algorithm assumes that the English cepts are composed of consec-
utive words and the word alignments do not contain target-side discon-
tinuities. Removing target-side discontinuities will be discussed later in
Section 4.4.

• Each translation operation generates zero or one German word and zero
or one English cept. We use cept positions for English (not word posi-
tions) because English cepts are composed of consecutive words. German
positions are word-based.

• The sequence of operations is linear in the sequence of English words, i.e.
the translation operations for some English cept ei precede the transla-
tion operations for another cept e′i if i < i′.

• The operation Generate Source Only (X) is executed immediately
after its preceding German word has been covered.
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Algorithm 1 Conversion Algorithm

i Position of current English cept Fi Sequence of German words linked to Ei

j Position of current German word Li # of German words linked with Ei

j′ Position of next German word k # of already generated German words for Ei

N Total number of English cepts aik Position of kth German translation of Ei

fj German word at position j Z Position after right-most generated German word
Ei English cept at position i S Position of the first word of a target gap W

i := 0; j := 0; k := 0

while fj is an unaligned word do
Generate Source Only (fj)
j := j + 1

while ei is an unaligned cept do
Generate Target Only (ei)
i := i + 1

Z := j

while i < N do
j′ := aik

if j < j′ then
if fj was not generated yet then

Insert Gap
if j = Z then

j := j′

else
Jump Forward

if j′ < j then
if j < Z and fj was not generated yet then

Insert Gap
W := relative position of target gap
Jump Back (W)
j := S(W )

if j < j′ then
Insert Gap
j := j′

if k = 0 then
Generate (Fi, Ei) {or Generate Identical}

else
Continue Source Cept

j := j + 1; k := k + 1
while fj is an unaligned word do

Generate Source Only (fj)
j := j + 1

if Z < j then
Z := j

if k = Li then
i := i + 1; k := 0
while ei is an unaligned cept do

Generate Target Only (ei)
i := i + 1

144



4 A Joint Sequence Translation Model with Integrated Reordering

• The operation Generate Target Only (Y) is executed immediately
after its preceding English word has been covered.

• The operation Generate Identical is chosen if the German and English
strings are the same and the overall frequency of the German word is 1.

• Gaps and/or jumps are needed whenever the German word to be gener-
ated next does not immediately follow the previously generated German
word.

• A gap is inserted when the translator decides to skip the immediately
following German word(s) (which is/are not generated yet) to generate
another German word.

• A forward jump is necessary if the German word to be generated next
is at the right and some already generated German word is between the
previously generated word and the German word to be generated next.

• A backward jump is needed if the next German word is located before
the previously generated German word.

• The relative position of the gap is 1 if it is closest to the right-most
German word so far covered, 2 if it is the second closest gap etc.

Figure 4.8: Sample Bilingual Sentence for the Dry-Run of the Conversion Algo-
rithm – German Indexes Represent Word Positions and the English
Indexes Represent Cept Positions
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Operation Generation States

Start

Generate(das, this)

Insert Gap

Generate(keineswegs, does not)

Jump Back(1)

Generate(bedeutet,mean)

Jump Forward

Generate(, , that)

Insert Gap

Generate(alles , everything)
Continued on Next Page. . .
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Generate Source Only(zuwege)

Generate Target Only (has)

Generate(zu , to)

Jump Back(1)

Generate(sofort bringen,
happen at once)

Jump Forward

Continue Source Cept

Table 4.1: Step-wise Generation of Example 4.8. The arrow indicates position
j

4.2.7 Algorithmic Complexity

The complexity of the corpus conversion algorithm is O(NM), where N =
number of English cepts and M = number of open gaps. The generation of
English cepts can be done in an O(N) time. But each time the translator jumps
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back to an open gap, finding the relative position of the gap with respect to Z
requires O(M) time.

4.3 Model
Our model is estimated from a sequence of operations obtained through the
transformation of a bilingual sentence pair. An operation can be to generate
source and target words or to perform reordering by inserting gaps and through
forward and backward jumps. Let O = o1, . . . , oj−1 be a sequence of operations
as hypothesized by the translator to generate the bilingual sentence pair <
F,E >, the translation model is defined as:

p(F,E,A) =
J∏
j=1

p(oj|oj−n+1...oj−1)

where n indicates the amount of context used, A defines the alignment func-
tion between E and F . Our translation model is implemented as an N-gram
model of operations using SRILM Toolkit (Stolcke, 2002) with Kneser-Ney
smoothing. The translate operations (Generate(*)) encapsulate tuples. Tuples
are minimal translation units extracted from the M-N word aligned corpus such
that, given the alignment, each bilingual sentence pair has a unique segmen-
tation and each tuple is an atomic unit. The idea is similar to N-gram-based
SMT except that the tuples in the N-gram model are generated monotonically.
The bilingual corpus is monotonized by linearizing the source according to the
target. We do not impose the restriction of monotonicity in our model but in-
tegrate reordering operations inside a generative model. A detailed comparison
with the N-gram and Phrase-based models follows later.

4.3.1 Search

Given a source string F , a sequence of tuples T = (t1, . . . , tn) as hypothesized
by the decoder to generate a target string E, the search problem can be defined
as:
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Ê, Â = argmax
E,A

p(F,E,A)

The computation of p(E,F ) requires summation over all possible alignments
A which is not feasible. Therefore we assume a Viterbi approximation, that
the probability of the most probable alignment of E and F is close to the sum
of the probabilities of all possible alignments of E and F .
Because the English data for training the monolingual language model is

available in a lot more quantity the search problem can benefit from it. Inte-
grating the language model the search is defined as:

Ê, Â = argmax
E,A

pLM(E)p(F,E,A)

where pLM(E) is the target-side monolingual language model and p(F,E,A)
is the translation model. But in this model E would be generated twice. To
negate this effect we divide by the marginal ∑F ′,A′ p(F ′, E,A′).

Ê, Â = argmax
E,A

pLM(E) p(F,E,A)∑
F ′,A′ p(F ′, E,A′)

The marginal is approximated by ppr(E), a monolingual English ngram
model whose parameters are estimated on the English part of the bilingual
corpus. The search can then be defined as:

Ê, Â = argmax
E,A

pLM(E)p(F,E,A)
ppr(E)

Both, the monolingual language and the prior probability model are imple-
mented as standard word-based n-gram models:

px(E) ≈
J∏
j=1

p(wj|wj−m+1, . . . , wj−1)

where m indicates the amount of context used. We use a 5 gram for the mono-
lingual language model and a 9 gram for the operation language model. The
prior probability model is estimated from the English-side of the bilingual data.
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In decoding, the amount of context used for the prior probability is synchro-
nized with the position of back-off in the operation model. For example gen-
erating the bilingual sentence pair in Figure 4.8, say the decoder hypothesizes
a translation tuple “sofort bringen – happen at once”. The operation history is:

“Generate(das,this)→ Insert Gap→ Generate(keineswegs, does not)→ Jump
Back(1) → Generate(bedeutet,mean) → Jump Forward → Generate(, , that)
→ Insert Gap→Generate(alles , everything)→Generate Source Only(zuwege)
→ Generate Target Only (has) → Generate(zu , to)

Let us assume that the operation model backs-off at the operation Gener-
ate(alles,everything). The context used for the prior probability model, in this
case, will be “everything has to”. If the operation model backs-off the operation
Generate(zu,to) then a bigram model is used for the prior probability model
and the look-up history will only have the English word “to”. The idea of the
prior probability model is to negate the effect of E generated in P (F,E,A).
Using a prior probability model makes our formulation similar to the Noisy

Channel model which tries to maximize the translation probability as:

p(E|F ) = argmax
E

p(F |E)pLM(E)

Substituting p(F |E) with p(F,E)
p(E) gives the search problem as used by our

model.

4.3.2 Discussion

In this section we will enumerate some useful properties of our model.

• Integrating Translation and Reordering: The model provides a
novel formulation that integrates translation and reordering into a single
operation model. Since the translation (generation) and reordering op-
erations are coupled in a single generative story, the reordering decisions
may depend on preceding translation decisions and translation decisions
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may depend on preceding reordering decisions. This provides a natural
reordering mechanism. The placement of gaps is conditioned on the lo-
cal context and therefore quite restrictive. Similarly, the backward jump
operation is also conditioned on the local context. Recall the movement
of “gegessen” in the following example:

Which operation is likely after the initial generation of the translation
pair “hat – has”? In the English sentence, the verb is likely to follow,
whereas in the German sentence we expect a noun phrase as a proba-
ble sequence of words. Consequently, the probability of a gap insertion
operation after the generation of the auxiliaries “hat – has” will be high
because reordering is necessary in order to move the second part of the
German verb complex (“gegessen”) to its correct position at the end of
the clause. After inserting the gap and generating the translation pair
“gegessen – eaten”, we are likely to see a noun phrase (an eatable ob-
ject) in the English sentence. Therefore a probable next operation is a
backward jump to the gap position in the German sentence.

• Learning Lexical Triggers: Our model has the ability to learn lexical
triggers that it can apply to the unseen patterns. The generation of the
above sentence in our model starts with generating “er – he”, “hat – has”.
Then a gap is inserted on the German side, followed by the generation
of “gegessen – eaten”. At this point, the (partial) German and English
sentences look as follows:

er hat gegessen

he has eaten
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The translator then jumps back on the German side and fills it by gen-
erating “eine – a” and “Pizza – pizza”. A reordering pattern is learned
by memorizing the operation sequence:

“Generate(hat, has)→ Insert Gap→Generate(gegessen, eaten)→ Jump
Back(1)”

The learned pattern can be successfully applied to the German sentence
“sie hat eine menge butterkekse gegessen – she has eaten a lot of butter
cookies” or any other German sentences having a construction such as
“hat X gegessen – has eaten X”, where X is a non-terminal category
(represented by a gap in our model), a placeholder for the words to be
filled in further translation steps.

Multiple open gaps exhibit a behavior similar to that of having multiple
non-terminals in a hierarchical or discontinuous phrase-based system.
Recall the example shown below:

Figure 4.9: Sub-ordinate German-English Clause Pair

From the generation of the following example:

“ ... Generate(sie, they) → Insert Gap → Generate(nicht,do not) →
Insert Gap → Generate(wollen, want to) → Jump Back(1) ...”

the model learns a pattern that will be useful for translating any con-
struction such as “sie X1 nicht X2 wollen – they do not want X1 X2.

• Handling of Local and Non-local Reorderings: The operation model
gets away from the “shot gun” reordering model by restricting jumps
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to gap positions and is able to represent dependencies which cross the
“phrase boundaries” of phrase-based SMT. Both local and long distance
dependencies are handled in a unified manner. Consider the sentence pair
shown in Figure 4.10 (a).

Figure 4.10: Handling Dependencies (a) Local (b) Non-local

The generation of the above sentence in our model starts with generating
“Wir – We”, “können – can”. Then a gap is inserted on the German side,
followed by the generation of “helfen – help”. At this point, the (partial)
German and English sentences look as follows:

Wir können helfen

We can help

The translator then jumps back on the German side and fills the gap by
generating “Ihnen – you”, for the first example and generating “Ländern
– countries”, “beim – null” and “Aufholen – catch up” for the second
example, thus handling both short and long distance reordering in a
unified manner.

• Discontinuous Source-Side Units:With the help of “Insert Gap” and
“Continue Source Cept” operations our model can learn discontinuous
source-side units like “hat ... gelesen – read” and “kehrten...zurück –
returned”. Our model does not handle target-side discontinuous units.
But we will give a heuristic (discussed in Section 4.4) to deal with such
units.

153



4 A Joint Sequence Translation Model with Integrated Reordering

• Minimal Translation Units: Our model, like the N-gram model, uses
only minimal translation units.7 Using minimal units prevents our model
from having the spurious phrasal segmentation problem. However, it
presents a more difficult challenge in search than the N-gram model faces.
We will discuss this in detail in Section 4.5.

• Memorizing Phrases: Although it is based on minimal translation
units, our model has the ability to learn larger phrasal units. Through the
operation sequences, the model not only memorizes reorderings local to a
phrase but also the non-local inter phrase reorderings. Recall the example
in Figure 4.2 (Page 133) and its generation. The model memorizes the
verb phrase “nicht verhandeln wollen – do not want to negotiate” through
the operation sequence:

“Generate (nicht , do not) → Insert Gap → Generate (wollen , want to)
→ Jump Back(1) → Generate (verhandeln , negotiate)”

and a prepositional phrase “über konkrete Zahlen – on specific figures”
through the operation sequence:

“Generate(über, on)→Generate(konkrete, specific)→Generate(Zahlen,
figures)”

It also memorizes that the prepositional phrase gets swapped with the
verb phrase. This is done in two steps. In the first step the translator
inserts a gap and skips the generation of the prepositional phrase “über
konkrete Zahlen – on specific figures” and continues with the generation
of the verb phrase “über konkrete Zahlen – on specific figures” through
the above sequence. At this point, the (partial) German and English
sentence look as follow:

The translator then jumps back and generates the prepositional phrase
to complete the swap.

7M-N word alignments obtained from the symmetrization of GIZA++ alignments

154



4 A Joint Sequence Translation Model with Integrated Reordering

• Bilingual Context: Our model, like the N-gram model, takes into ac-
count bilingual context when generating translations. The model has
access to n preceding operations, each encapsulating translation or re-
ordering information on how previous German words were translated or
reordered.

• Insertions and Deletions:preposition phrase Our model can learn
insertions and deletions in context just like the phrase-based system
through the “Generate Source Only(X)” and “Generate Target Only(Y)”
operations. The decoder can hypothesize a translation unit such as “Sie
– null” when translating “kommen Sie mit”, through “Generate Source
Only (Sie)” operation. Although the generative story has the “Generate
Target Only(Y)” operation and the operation model can score good ver-
sus bad insertions with the help of context, selecting the most probable
candidates for insertion during decoding is a non-trivial problem. Our
model shares this drawback with the N-gram model. In order to remedy
this problem a heuristic is applied to remove the unaligned target-words
from the word alignments. See Section 4.4 for details.

4.3.3 Discriminative Modeling

In order to improve end-to-end accuracy, we introduce new features for our
model and shift from the generative model to the standard log-linear approach
(Och and Ney, 2004) to tune8 these. We search for a target string E which

8We tune the operation, monolingual and prior probability models as separate features. We
expect the prior probability model to get a negative weight but we do not force MERT
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maximizes a linear combination of feature functions:

Ê = arg max
E


J∑
j=1

λjhj(F,E)


where λj is the weight associated with the feature hj(F,E). Other than the 3
features discussed above (log probabilities of the operation model, monolingual
language model and prior probability model), we train 9 additional features
discussed below:

Length Bonus

During decoding when hypotheses compete, a hypothesis having lesser number
of target words is favored by the language model because less n-grams have
to be scored. In order to counter this effect and compensate for the model’s
bias towards producing shorter sentences, a length bonus feature (also called
length penalty or word bonus/penalty) is used by many SMT systems. The
length bonus feature counts the length of the target sentence in words:

hlb(F,E) = hlb(E) = T

where T is the number of target words hypothesized by the decoder to produce
the output sentence E.
By adjusting the feature weight λlm of the length bonus feature we can make

the system produce shorter or longer sentences. If λlm is negative, the system
will produce shorter output sentences and vice versa.

Deletion Penalty

Another feature for avoiding too short translations is the deletion penalty.
Deleting a source word (Generate Source Only (X)) is a common operation in

to assign a negative weight to this feature.
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the generative story. Because there is no corresponding target-side word, the
monolingual language model score tends to favor this operation. The deletion
penalty counts the number of deleted source words:

hdp(F,E) = hdp(F ) = S

where S is the number of source words deleted by the decoder to produce the
output sentence E.

Gap Bonus and Open Gap Penalty

These features are introduced to guide the reordering decisions. We observe
a large amount of reordering in the automatically word aligned training text.
However, given only the source sentence (and little world knowledge), it is not
realistic to try to model the reasons for all of this reordering. Therefore we
can use a more robust model that reorders less than humans. The gap bonus
feature sums to the total number of gaps inserted to produce a target sentence:

hgp(F,E) = G

where G is the number of gaps inserted by the decoder to produce the output
sentence E.
The open gap penalty feature is a penalty (paid once for each translation

operation (Generate, Generate Identical, Generate Source Only) performed)
whose value is the number of open gaps. Each generate operation translates
one German word at a time. The model penalizes a hypothesis for any open
gaps every time it decides to generate a source word instead of closing an
open gap and generating the skipped source words. This penalty controls how
quickly gaps are closed. Given a source sentence F and a sequence of tuples
T = (t1, . . . , tJ) as hypothesized by the decoder to produce a target sentence
E, let qj be the number of open gaps when translating the tuple tj, the open
gap feature is estimated as:
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hogp(E,F ) =
J∑
j=1

qj

Recall the example 4.9. At an intermediate step the partial German and
English sentences are:

The open gap penalty paid by the hypothesis after generating the tuple
“wollen – want” is 2. In the next step if the decoder chooses not to jump back
and generate another source word excluding the ones represented by the gaps,
it will have to pay the open gap penalty of 2 again. If the decoder decides to
jump back and cover the skipped words, it will still pay an open gap penalty
of 1 for the second open gap in all the subsequent generations until there are
no more open gaps. The overall idea is to close any open gaps quickly unless
the other features provide strong evidence for a different ordering.

Distance-based Penalties

Reordering Distance Penalty: We apply three additional features to control
the reordering decisions. One of these is similar to the distance-based reorder-
ing model used by phrase-based SMT. Let x1, . . . , xn and y1, . . . , ym represent
indexes of the source words covered by the tuples tj and tj−1 respectively. The
distance between tj and tj−1 is given as:

dj = min(|xk − yl| − 1)where x1 ≤ xk ≤ xn, y1 ≤ yl ≤ ym

The accumulative reordering penalty is given as:

hrdp(E,F ) =
J∑
j=1

dj

This is different than the phrase-based system which calculates the distance
as d = |x1 − ym − 1|, where x1 = index of the current source phrase and
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Figure 4.11: An Example to Demonstrate Gap Distance Penalty

ym−1 = index of the last word of the previous source phrase. In our formulation
monotonic and swap reorderings both get a reordering distance of 0. Say phrase
p0 covers source words {4 5} and phrase p0 covers source words {2 3}. The
reordering distance according to PBSMT is d = |2−5−1| = 4. The reordering
distance according to our formulation is |3 − 4| − 1 = 0. The intuition is to
penalize left and right jumps equally. This subtle difference leads to minor
performance gains in some of our experiments.

Gap Distance Penalty: The other feature is the gap distance penalty which
calculates the distance between the index of the first word of a source cept x
and the index of the first word of the left-most gap. This cost is paid once for
each Generate, Generate Identical and Generate Source Only. For a source cept
covered by the indexes x1, . . . , xn, we get the feature value gj = x1−S, where
S is the index of the left-most source word where a gap starts. See Figure 4.11
for example. The decoder decides to cover the German word “helfen” (at index
5) by inserting a gap that represents the words “Ländern beim Aufholen”. The
first German word represented by the gap is “Ländern” (at index 2). A gap
distance penalty 5 − 2 = 3 will be paid. Again the purpose of this feature
is to close any previously opened gaps quickly. It penalizes any long distance
jumps maintaining that the decoder should only reorder if there is sufficient
evidence from other features (operation and monolingual language models).
The accumulative gap distance penalty is defined as:
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Figure 4.12: An Example to Demonstrate Relation Between Reordering and
Gap Distance Penalties

hgdp(E,F ) =
J∑
j=1

gj

The gap distance feature correlates with the previously discussed reorder-
ing penalty feature in some cases but there is an inverse relationship in other
scenarios. Recall the generation of the example in Figure 4.12. After covering
the tuple “sie – they”, the decoder inserts a gap for the skipped words “über
konkrete Zahlen” to generate the tuple “nicht – do not”. Both the reorder-

ing and gap distance penalties operate in the same direction and penalize the
jump. However, after the generation of “nicht – do not” the reordering penalty
prefers the monotonic path i.e. the continuing with the German verb “verhan-
deln”. On the other hand the gap distance penalty prefers a “Jump Back(1)”
operation to cover the skipped German word “über”. The hypothesis that cov-
ers “verhandeln” pays a gap distance penalty of 6 − 2 = 4 but a reordering
penalty of 0. The hypothesis that covers “über” pays a reordering penalty of
|2− 6| − 1 = 3 and no gap distance penalty.
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Figure 4.13: An Example to Demonstrate Gap Width Penalty

Gap Width Penalty: Another distance-based penalty used in our model is
the gap width penalty. This feature only applies in the case of a gappy trans-
lation unit such as “kehrten...zurück – returned” in Figure 4.13. The value of
this feature wj is the width of the gap which is the same as the number of
source words separating the words in the gappy unit. There are six German
words separating the gappy unit “kehrten...zurück”. The decoder pays a gap-
width penalty of 6 when it hypothesize the translation unit “kehrten...zurück
– returned” for this example.
Formally let f = f1 . . . , fi, . . . , fn be a gappy source cept where xi is the

index of the ith source word in the cept f . The value of the gap-width penalty
is calculated as:

wj =
n∑
i=2

xi − xi−1 − 1

The accumulative gap width penalty is defined as:

hgwp(E,F ) =
J∑
j=1

wj

Using tuples with source gaps increases the list of extracted n-best trans-
lation tuples multiple times, making the search problem more difficult. The
purpose of this feature is to help the decoder prune out the tuples having
source gaps, unless other features provide supporting evidence.
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Lexical Features

We also use source-to-target pw(e|f) and target-to-source pw(f |e) lexical trans-
lation probabilities. Our lexical features are standard (Koehn et al., 2003). The
estimation is motivated by IBM Model-1. Given a tuple ti with source words
f = f1, f2, . . . , fn, target words e = e1, e2, . . . , em and an alignment a be-
tween the source word positions x = 1, . . . , n and the target word positions
y = 1, . . . ,m, the lexical feature pw(f |e) is computed as follows:

pw(f |e, a) =
n∏
x=1

1
|{y : (x, y) ∈ a}|

∑
∀(x,y)∈a

w(fx|ey)

The lexical translation probabilities w(fx|ey) are computed from the word-
alignments. The lexical probability feature pw(f |e, a) for the example in Figure
4.14 can be computed as follow:

pw(mit allem|with all) = 1
2(w(mit|with) + w(mit|all))× w(allem|all)

Figure 4.14: An Example to Demonstrate Lexical Probability Feature

pw(e|f, a) is computed in the same way:

pw(e|f, a) =
n∏
y=1

1
|{x : (x, y) ∈ a}|

∑
∀(x,y)∈a

w(ey|fx)

The lexical probability feature pw(e|f, a) for the example in Figure 4.14 can
be computed as follow:
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pw(with all|mit allem) = w(with|mit)× 1
2(w(all|mit) + w(all|allem))

When there are multiple alignments a for a tuple, we calculate pw(e|f) and
pw(f |e) for each of these alignments and the average of two. Then we choose
the alignment that gives the best average probability.

4.4 Word Alignments - Post-processing Heuristic
Now we will discuss two important issues that we have ignored so far:

• Target-Side Discontinuities

• Unaligned Target Words

4.4.1 Removing Target-Side Discontinuities

Problem: Our generative story does not handle target-side discontinuities. A
principled drawback of the generative story is the assumption that the English
sentence is generated from left to right linearly. The sequence of operations is
linear in the sequence of English words, i.e. the translation operations for some
English cept ei precede the translation operations for another cept e′i if i < i′.
The same is not true on the German-side where the words can be generated
in any order. This assumption leads to a problem discussed below.
A discontinuous unit can be generated in two steps. The first step generates

the tuple with an operation “Generate (X,Y)”, where “Y” is a discontinuous
English cept such as “poured...down” in Figure 4.15. The second part of the
discontinuous cept “down” is stored in a queue to be generated later. The
operation “Continue Target Cept” generates the target word “down” of the
cept “poured...down”.
This mechanism is analogous to that of handling source-side discontinuous

units. However, the difference is that the target-side can only be generated
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Figure 4.15: Target Side Discontinuities

from left-to-right in order. This implies that for the example in Figure 4.15,
the “Continue Target Cept” operation executes after the intervening opera-
tions “Generate(den, the)→ Generate(Drink , drink) →. This makes the con-
ditioning of the “Continue Target Cept” on the “Generate (hinunterschüttete,
poured)” weak.
Secondly, in case of multiple discontinuous target-side cepts, the operation

model does not know which “Continue Target Cept” operation corresponds to
which “Generate(X, Y)” operation. The generation sequence for both Figure
4.16 (a) & (b) is:
“Generate(A, a1 a2) → Generate(B, b) → Generate (C, c1 c2) → Gener-

ate(D, d) → Continue Target Cept → Continue Target Cept”

Figure 4.16: Multiple Target Side Discontinuities

We do not have the same problem with the source-side discontinuous units
because the “Continue Source Cept” operation follows immediately or after an
“Insert Gap” operation. The conditioning on the Generate(X,Y) operation is
strong and there is no ambiguity in the case of multiple source discontinuous

164



4 A Joint Sequence Translation Model with Integrated Reordering

cepts. Each “Continue Source Cept” operation follows immediately after its
“Generate(X,Y)” counterpart.

Heuristic: In this section we discuss a method to eliminate target-side dis-
continuities from the training corpus. If a source word is aligned with multiple
target words which are not consecutive, first the link to the least frequent tar-
get word is identified, and the group of links containing this word is retained
while the others are deleted. The intuition here is to keep the alignments con-
taining content words (which are less frequent than functional words). For
the example in Figure 4.15, the alignment link between “hinunterschüttete –
down” is deleted and only the link “hinunterschüttete – poured” is retained
because “down” occurs more frequently than “poured”.
After applying this heuristic we will have new unaligned English words,

along with the English words that were unaligned in the initial alignments. In
the next section we discuss how to deal with these unaligned English words.

4.4.2 Removing Unaligned Target Words

Problem: Although the generative story provides an operation to generate
the unaligned target words (Generate Target Only(Y)), inserting target-side
words spuriously during decoding is a non-trival problem. This problem has
been addressed by using epsilon arcs (Knight and Al-Onaizan, 1998; Banga-
lore and Riccardi, 2000), however, the decoding becomes increasingly complex
(Mariño et al., 2006). N-gram-based SMT removes unaligned target words by
attaching them with the preceding or the following tuple. A literature review
on dealing with attaching unaligned words has been covered in the previous
chapter (See Section 3.1.4 on Page 92).

Heuristic: Here we propose another heuristic for the attachment of unaligned
target words. For each unaligned target word, we determine the (left or right)
neighbor that it appears more frequently with and align it with the same source
word as the neighbor. This is done through a simple counting procedure over
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the training corpus to determine attachment preference of a word, the intuition
is that words attach to words they frequently appear next to. See Algorithm 2
for the counting procedure to learn the attachment preference of the target-side
words.

Algorithm 2 Learning Attachment Preferences of Target-Side Words
n = number of target words
i = target word at index x
j = source word aligned with i
for x = 1 to n do
if i is unaligned then
count(i− 1, i)← count(i− 1, i) + 0.5
count(i, i+ 1)← count(i, i+ 1) + 0.5

else if i− 1,i and i+ 1 aligned to j then
count(i− 1, i)← count(i− 1, i) + 0.5
count(i, i+ 1)← count(i, i+ 1) + 0.5

else if i− 1,i aligned to j then
count(i− 1, i)← count(i− 1, i) + 1

else if i,i+ 1 aligned to j then
count(i, i+ 1)← count(i, i+ 1) + 1

For a target word i in a bilingual sentence pair, if i is unaligned, we add a
count 0.5 for the word pairs (i − 1, i) and (i, i + 1). If i, its preceding word
(i − 1) and the following word(i + 1) are aligned with the source word j ,we
add a count 0.5 for the word pair (i − 1, i) and (i, i + 1). In the above two
scenarios there is an uncertainty of whether to connect i to its left or to the
right. We therefore give a partial count for i attaching to the right of i−1 and
to the left of i+ 1. If there is no right or left word i.e. i is the first or the last
word respectively then a count of 1 is given instead.
If i and its preceding word are aligned to a source word j, we add a count of

1.0 to the pair(i− 1, i). If i and its following word are aligned to source word
j, we add a count of 1.0 to the pair(i, i + 1). In the above two scenarios we
are certain that i either connects to the right or to the left so we give a count
of 1. Figure 4.17 shows an example of unaligned target-words and the learned
counts using Algorithm 2. Notice that count(be, just) and count(be, just) do
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Figure 4.17: Learning Attachment Counts from Word Alignments

not mean the same and their counts do not sum up. The former maintains the
information about the word “be” while the latter keeps a record for the word
“just”. Learning count(be, just) does not imply the learning of count(be, just).
In a scenario where “just” is aligned to some German word, the algorithm will
not add to the count(be, just).
Based on the counts collected by Algorithm 2, we can attach any unaligned

target word to its left or right depending upon which neighboring word it is
mostly observed with. The decision is made for each group of consecutive NULL
words. If the leftmost NULL word is at position i, and the rightmost NULL
word is at position i′ then we attach to the left if count(i−1, i) ≥ count(i’, i′+1)
otherwise we attach to the right.
The overall justification of the word alignment post-processing heuristics is

that high frequency words are more likely to carry out some function. We know
that the function words in English can often be safely attached to the nearby
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words. Low frequency words are more likely to be informative. The idea is
analogous to the ideas of “non-head” and “head” in LEAF (Fraser and Marcu,
2007). In LEAF a cept is formed of exactly one head, and zero or more non-
heads. A lot of the generative story depends only on the heads of the source
and target cepts, rather than the full cepts.

4.4.3 Algorithmic Complexity

In this section we discuss the algorithmic complexity of different components
in the post-processing heuristic:

• The complexity of removing the target-side discontinuities from the align-
ments is O(N log M), where N = number of discontinuous target-side
cepts and M = size of the target-side vocabulary.

• The complexity of learning counts from the bilingual corpus is O(N log
M) where N = number of English words in a sentence, M = size of the
map that maintains the counts.

• The right-or-left attachment heuristic also requires O(N log M) time,
where N = number of unaligned English words in a sentence and M =
size of the map that maintains the counts.

Using hash tables for storing tuples, reduces the (amortized) complexity of
a look up to be constant. The overall complexity of these components can then
be reduced to O(N).

4.5 Decoding
We implemented a custom-made decoder. In this section we will discuss the
details of its different components. Our decoder performs a stack-based search
with a beam-search algorithm similar to that used in Pharaoh (Koehn, 2004a).
Hypotheses are arranged in stacks, such that each stack i stores hypotheses that
have translated i many source words. This means that translating a sentence

168



4 A Joint Sequence Translation Model with Integrated Reordering

of length n requires n + 1 stacks.9 The decoding process can be divided into
the following steps:

• Tuple Lookup

• Hypothesis Extension

• Future Cost Estimation

• Recombination and Pruning

4.5.1 Tuple Extraction

Given an input sentence F , the decoder first extracts a set of matching source-
side cepts along with their n-best translations to form a tuple inventory. The
cept extraction routine extracts both gappy and non-gappy source cepts. Ex-
traction of continuous source cept can be performed in polynomial time but
extracting discontinuous source cepts requires an exponential number of look-
ups (Galley and Manning, 2010). Notice that for a source sentence having
length n, a maximum of 2n−1 translation units can be extracted. Say we have
a test sentence “ich muss jetzt gehen” having 4 German words. All possible
translation units (total 15) can be represented in 4 bits as in Table 4.2. Each
bit represents a source word. The left-most bit represents the first word and
the right-most bit represents the fourth word. A zero bit means absence of that
word in this phrase. For example a bit sequence “1 0 0 1” means a discontinu-
ous cept “ich...gehen” and a bit sequence “0 1 0 1” means a discontinuous cept
“muss...gehen”.
As can been seen, an n word source sentence can have 2n − 1 possible

sequences.10 A brute-force algorithm would therefore require an exponential
number of look-ups in the translation corpus to extract the valid (observed
during training) discontinuous cepts.

9An additional stack is used to store the start (dummy) hypothesis that has translated no
words.

10A sequence with all zero bits is not possible hence 2n − 1 instead of 2n
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Table 4.2: All Possible Discontinuous Phrases in a 4 Word Sentence

We can benefit from the fact that our model uses only minimal translation
units. Most of the German cepts, continuous or discontinuous, only contain up
to 2-3 words. This means that most of the bit sequences, no matter how big a
source sentence is, are useless. But we need a mechanism to safely discard the
not useful information and do only a few look-ups. Below we give an algorithm
for this.

Figure 4.18: An Example to Demonstrate the Cept Extraction Algorithm

Given a source sentence F = f1, . . . , fn our algorithm represents the 2n − 1
bit sequences in the form of a tree and performs search on that tree. The tree
structure is formed such that each node in the tree represents a source word.
Each node is represented by the index of the source word i. The root node is
the first source word. Each node i has exactly n − i children nodes such that
the first child (left-most) is a source word at index id i + 1, second child is a
source word at index i+ 2 and so on. For the example given in Figure 4.18 we
form a tree-structure as shown in Figure 4.19. The tree represents 26−1 cepts.
The bit sequence “0 1 0 0 0 1” representing the source cept “hat...gelesen”
can be obtained by starting at node 2 and traversing its right-most node i.e
node 6. Similarly the bit sequence “0 0 1 0 1 0” representing the source cept
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“er...Buch” can be obtained by starting at the node 3 and traversing its middle
node represented by X11 until node 5.
In order to find all possible cepts the entire graph has to be searched with

all possible permutations and stopping points. As the sentence length grows
the tree grows exponentially making the search process computationally infea-
sible. However, notice that we are using very small translation units mostly
containing 2-3 source words. This means that we do not have to search all
possible permutations and can skip a sub-tree very early in the search process.
Considering the example under discussion, we begin at the root node, find-
ing cepts that begin with the word “dann”. At node 1 we search for the word
“dann” in the cept lexicon. As we traverse to the node 2 we search for the cept
“dann hat”. If we find the cept “dann hat” in the cept lexicon, we traverse
the sub-trees of the node 2, looking for more cepts otherwise we can skip the
entire tree represented by the node 2. But what about cepts like “dann hat er”
or “dann hat Buch”? How can we skip these without checking whether or not
these cepts appear in the cept lexicon? To ensure that we do not lose any cept,
we also store a cept lexicon with partial cepts. It maintains information that
the cept lexicon has cepts starting from the word “dann” or cepts having the
first two words “dann hat” and so on. Again maintaining and doing a look-up
from such partial cept lexicon is not computationally expensive because most
cepts contain only 2-3 source words. If the look-up for “dann hat” in the cept
lexicon fails then we try the partial cept lexicon for an entry such as “dann
hat” to see if the cept “dann hat” has any promising continuation. Therefore
our search for cept can have three results, hit, miss or partial hit. If there is a
hit or a partial hit the search process traverses further into the sub-tree other-
wise the algorithm skips the whole sub-tree. The same procedure is repeated
by starting again at node 1 and traversing through other children of 1.
After all the sub-trees of the node i have been covered (skipped or traversed),

we have all the cepts starting with the word fi in F . The next step is to delete
the node i and all its children except the left most child which is node i + 1

11Due to the space limitation, the sub-trees are shown as non-terminals X, Y and Z.

171



4 A Joint Sequence Translation Model with Integrated Reordering

Figure 4.19: Search Tree for Source-side Cept Extraction

representing the next word. The search process starts again finding cepts for
the word fi+1. The node i+ 1 then becomes the root. This process is repeated
iteratively until there are no nodes left in the tree.
Algorithm 3 provides two routines to extract all possible cepts from a source

sentence F . The Extract-Cepts routine traverses through the tree and calls the
Search-Cepts function once for each source word in F . Each iteration collects
all the source cepts having the word Fi as the starting word. The Search-Cepts
routine calls itself recursively going deep in the tree as long as it is able to find
cepts in Cept Lexicon or Partial Cept Lexicon.
Each source cept is extracted with the n-best translation options to form a

tuple corpus. In our experiments we use 10-best English translations for each
source cept.

Algorithmic Complexity

In order to extract all possible cepts from a German sentence of length n, at
most 2n − 1 lookups are required. Let J be the size of the tuple lexicon that
maintains both partial and complete cepts. Searching for a tuple in such a lex-
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Algorithm 3 Cept Extraction Algorithm

root Root of tree structure
searchString A cept of one ore more source words
ceptLex A lexicon containing valid source cepts
p-ceptLex A lexicon of partial cepts
F Words in test sentence

Extract Cept Function

Function Extract-Cepts(ceptLex , p-ceptLex, F)

root := 1; {Index of the first word of F}
searchString := F [root];

while root is not empty do
Search-Cepts(root, searchString, ceptLex, p-ceptLex, F );
root := Left-most child of root; {Discard other children}

End Function

Search Cept Function

Function Search-Cepts(root, searchString , ceptLex , p-ceptLex,
F)

if searchString is in ceptLex then
extractedCepts.add(searchString); {add to a list of extracted cepts}

else
if searchString is not in p-ceptLex then

RETURN;
for every child node i of root do

Search-Cepts(i, searchString + F [i], ceptLex, p-ceptLex, F );
End Function
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icon requires O(logJ) time. The overall complexity of the algorithm therefore
is O(2nlogJ).
However, notice that it is impossible to have all possible 2n − 1 cepts. Most

cepts that are extracted have an average of 2 source words. If we assume that
only cepts with 3 or less source words are extracted the number of look-ups
can be reduced to ∑d

r=1

(
n
r

)
, where d = 3 (maximum size of the cept that can

be extracted). Note that if we don’t restrict the size of source cept to 3 then
d = n and ∑n

r=1

(
n
r

)
= 2n−1. With this simplification, the average complexity

of the algorithm would then be Θ(∑d
r=1

(
n
r

)
logJ).

4.5.2 Hypothesis Extension

During hypothesis expansion, the decoder picks a tuple from the inventory and
generates the sequence of operations required for the translation with this tuple
in light of the previous hypothesis. A hypothesis maintains the index of the last
source word covered (j), the position of the right-most source word covered
so far (Z). Recall that these variables are used in the conversion algorithm 1
discussed in Section 4.2.6. These are required to translate the tuples and their
orderings into an operation sequence. A hypothesis also maintains, the number
of open gaps, the number of gaps so far inserted, the previously generated
operations, the generated target string, and the accumulated values of all the
features discussed in Section 4.3.3. Other elements of a hypothesis include
source cept (a set of words it covers), coverage vector specifying all the source
words that have been covered by this hypothesis and its preceding hypotheses.
Each hypothesis maintains a reference to its parent hypothesis. Figure 4.20
shows a sample hypothesis.
With the help of this information the decoder can now generate a sequence

of operations required to cover the next source cept along with its English
translation. After the operation sequence is generated, the probabilities and
values for different features are computed. An overall cost of the hypothesis
is calculated by summing the hypothesis cost with the cost of its parent hy-
pothesis and a future cost estimate (Section 4.5.3). The coverage vector is
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German : er
English : he
Coverage Vector : 101000
Operation Generation Variables:

j = 3
Z = 3
Open-Gap-Indexes = [1]

Features Values:
Language Model = −1.1
Operation Model = −1.25
Prior Probability = −2.90
Lexical Prob p(Ej|Fi) = −1.53
Lexical Prob p(Fi|Ei) = −1.76
Length Bonus = 2
Gap Penalty = 1
Open Gap Penalty = 1
Deletion Penalty = 0
Reordering Distance Penalty= 1
Gap Distance Penalty = 1
Source Gap Penalty = 0

Cost: −4.74
Previous Hypothesis : Back Pointer
Future Cost Estimate: -21.51

Figure 4.20: A Sample Hypothesis

updated and the new hypothesis is stored in the next Stack. A hypothesis may
be recombined or pruned to keep the search space manageable (See Section
4.5.4).

4.5.3 Future Cost Estimation

In our decoding framework, like in the phrase-based system, the stacks are
arranged based on the number of source words they have covered. One problem
with using stacks is that there would be unfair comparisons of hypotheses that
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have covered the same number of source words but have different coverage
vectors, consequently resulting in more search errors. To overcome this problem
an estimate called future cost is used in many SMT systems (See 2.2.7 on Page
65, for the discussion of future cost estimation).
Future cost estimates are computed in two steps:

• Future Cost for Cepts

• Future Cost for Larger Spans

Step 1 – Future Cost for Cepts

The first step is to estimate the future cost for each extracted cept. The cost
of different feature components is first computed. Consider the test sentence
“bitte schalten Sie Ihr Handy aus”. For a tuple “schalten aus – turn off” we
can estimate the cost of different feature components as follow:

• Language Model:

plm(E) = p(turn)× p(off | turn)

• Operation Model:

pop(E,F ) = p(Generate(schalten aus, turn off))× p(Insert Gap

| Generate(schalten aus, turn off))× p(Continue Source Cept

| Generate(schalten aus, turn off) Insert Gap)

• Prior Probability:

ppr(E) = p(turn)× p(off | turn)

• Length Bonus = 2
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• Deletion Penalty = 0

• Gap Penalty = 1

• Open Gap Penalty = 1

• Source Gap Penalty = 3

The prior probability model looks the same as the monolingual language
model but since their language models are estimated from different data they
give different estimates. We can not compute the values for the reordering
distance penalty, and gap distance penalty because at the time of future cost
estimation, the context is unknown.
Given all the feature values, the total cost of a cept pair is calculated. A

German cept can have many possible English translations. We pick the tuples
with the lowest cost. This process is repeated for all the extracted tuples.
Note that our future cost estimates are less accurate than those of the phrase-

based system because our model uses minimal translation units. Phrasal SMT
is aware during the preprocessing step that the words “nach meiner meinung”
will be translated as a phrase. This is helpful for estimating a more accurate
future cost because the context is already available. The same is not true for our
model, to which only minimal units are available. Our model does not have
the information that “nach meiner meinung” will be translated as a phrase
during decoding. The future cost estimate available to our model for the span
covering “nach meiner meinung” will have unigram probabilities for both the
operation and language model:

plm = p(in)× p(my)× p(opinion)

The operation model cost is estimated as:
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pop = p(Generate(nach, in))×p(Generate(meiner, my))×p(Generate(meinung, opinion))

Poor future cost estimates result in more search errors for our model making
the search problem harder than that of the phrase-based model. The N-gram
model faces the same search problem as ours but in their decoding framework
future cost is not required, because there are 2J stacks and all hypotheses in
a stack cover the same source words. See Section 3.4.2 (Page 112) for details.

Step 2 – Future Cost for Larger Spans

The previous step provides us with an estimate of the cost for covering each
cept. The next step is to estimate the cost for covering larger spans. Phrase-
based system uses a dynamic programming technique to find the cost of each
span (i, j):

cost(i, n) = mini≤j≤n{cost(i, j) + cost(j + 1, n)}

However, notice that this formulation does not work for calculation of fu-
ture cost for gappy units. Consider calculating the future cost estimate of the
span(1, 8). If the best way to cover the span is through a gappy cept 1 . . . 4 . . . 8,
then the above formulation can not capture this.
We tailored the dynamic programming algorithm to handle this problem. We

do not interfere with the existing algorithm but after the cost of the span(i, j)
has been calculated we do an additional pass for all the gappy cepts having start
index i and end index j, calculating whether using the gappy cept gives a better
cost. For example, for the span(1, 8) we check whether cept(1 . . . 4 . . . 8) +
cost(2, 3) + cost(5, 8) gives a better estimate than cost(1, 8). This additional
check is performed at every step of the dynamic programming algorithm. This
modification may work as long as gappy cepts don’t interleave. Assume there
was another cept 0 . . . 5, that gives the best cost of covering the indexes 0 and
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5. Our modification can not capture that the best cost is obtained through
cept(1 . . . 4 . . . 8) + cept(0 . . . 5) + cost(2, 3) + cost(6, 7).
Computing an accurate future cost estimate in presence of gappy units effi-

ciently is a non-trivial problem. Using inaccurate estimates makes the search
problem for our model even harder.

Using Future Cost during Search

The use of future cost estimates during decoding is done in the same way
as in a phrase-based system. After the accumulative cost of a hypothesis is
calculated, its coverage vector is updated. A future cost estimate is added to
that cost before pruning, to make a fair comparison with other hypotheses that
might be covering a different set of German words.

Future Cost with Gaps and Jumps To tighten the estimate, we add the
cost of any forward and backward jumps that we are certain about to the
future cost estimate. For example, if a certain hypothesis has “K” open gaps,
it will do at least K many “Jump Backward (X)” operations and 0 − to −K
“Jump Forward” operations depending upon the value of j and Z. We add
the unigram probabilities of the “Jump Forward” and “Jump Backward(1)”
operations , as estimated by the n-gram language model, to the future cost
estimate.

Using Future Cost with Gappy Cepts Another problem using future
cost with discontinuous cepts appears during decoding. If none of the words
of the gappy cept is covered but words between start and end are covered,
we get a wrong estimate. For a coverage vector {000100000}, the future cost
estimate would be cost(0, 2) + cost(4, 8). There is no efficient way to capture
the information on gappy-unit 1 . . . 4 . . . 8 during decoding if a word occurring
within this cept has been covered.
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4.5.4 Recombination and Pruning

Because the stack space grows exponentially, the search is intractable. To keep
the search space manageable and time complexity polynomial we apply re-
combination and pruning. Recombination is performed on hypotheses having
the same coverage vector, monolingual language model context, and operation
model context.
We do histogram-based pruning, maintaining the 500 best hypotheses for

each stack. We need a higher beam size to produce translation units similar
to the phrase-based systems. For example, the phrase-based system can learn
the phrase pair “nach meiner meinung – in my opinion” and generate it in
a single step placing it directly into the stack three words to the right. Our
system generates this example with three separate tuple translations “nach –
in”, “meiner – my” and “meinung – opinion” in three adjacent stacks. Because
“nach” is usually translated to “after” or “to” and “nach – in” is not a frequent
translation unit, it will be ranked quite low in the first stack until the tuple
“meiner – my” appears in the second stack. See Figure 4.21 for illustration.
This drawback is inherent from using cepts i.e., minimal units for translation.
Another reason for using a higher stack size is that we do not apply any hard

limit on reordering unlike state-of-the-art Phrase-based systems (which use a
default distortion limit of 6). Both of these factors make the search problem of
our model more difficult than that of the phrase-based model and the N-gram
model. A final reason for using a higher stack size is that our model has much
worse future cost estimates (discussed in the last section) than that of the
phrase-based model.

4.5.5 Algorithmic Complexity

The overall complexity of the stack-based decoding with histogram-based prun-
ing is O(S x T x L), where S = size of the stack, T = Number of translation
options and L= Length of the sentence. Because the stack size is constant and
number of translation options is linear with the sentence length, the complex-
ity can be simplified to O(L2). By applying the distortion limit the complexity

180



4 A Joint Sequence Translation Model with Integrated Reordering

Figure 4.21: Comparison of Search - Phrases vs. Tuple Placement on Stack
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can be further reduced to be linear (Koehn, 2010). This analysis holds for our
decoder which is based on the same beam-search algorithm as used by the
standard phrase-based decoder.

4.6 Training
The training of our model includes the following steps:

• Generating symmetrized alignments

• Post-editing of the alignments

• Extraction of the tuple corpus

• Generation of the operation sequence

• Estimation of the n-gram language models

The first step is to generate word alignments by running GIZA++ twice
and symmetrizing with the grow-diag-final-and heuristic. The post-editing step
removes target-side discontinuities and unaligned target words from the word
alignments. See Section 4.4 for details. The next step is to extract a tuple
corpus from the modified word alignments. Tuples are extracted with three
probabilities, (i) lexical probability p(e|f) (ii) Lexical Probability p(f |e) and
(iii) a joint probability p(e,f). For the computation of lexical probabilities see
Section 4.3.3. The English translations of a cept in the tuple corpus are ranked
using the joint probability p(e, f). It is used by the decoder as a filtering
criterion to select the n-best translations of a source cept during search. The
probability is estimated as:

p(e, f) = count(e, f)
Total number oftuples

Then we apply Algorithm 1 (See Section 4.2.6 for details) to convert the
preprocessed aligned corpus into a sequence of translation operations. The
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resulting operation corpus contains one sequence of operations per sentence
pair.
In the final training step, the three language models are trained using the

SRILM Toolkit. The operation model is estimated from the operation corpus.
The prior probability model is estimated from the target side part of the bilin-
gual corpus. The monolingual language model is estimated from the target side
of the bilingual corpus and additional monolingual data.

4.7 Evaluation
We evaluated the system on three data sets with German-to-English, Spanish-
to-English and French-to-English news translations. We used data from the 4th

version of the Europarl Corpus and the News Commentary which was made
available for the translation task of the Fourth Workshop on Statistical Ma-
chine Translation.12 The bilingual data is obtained by concatenating the entire
news commentary (≈ 74K sentences) and Europarl, for the estimation of the
translation model. The monolingual data comprises the English part of the
bilingual data and the news commentary. The experiments are done with dif-
ferent bilingual and monolingual data sizes, mentioned explicitly in each sec-
tion. All data is lower cased, and tokenized through the Moses tokenizer. The
dev and dev-test sets are news-dev2009a and news-dev2009b which contain
1025 and 1026 parallel sentences. The feature weights of our system are tuned
with Z-MERT (Zaidan, 2009). To compare our system against the baselines, we
used the official evaluation data (news-test sets) from the Statistical Machine
Translation Workshops 2007-2011 for all three language pairs (German, Span-
ish and French). All the systems are tuned using the dev set news-dev2009a.
The converged vector is then used to decode the 5 test sets.

12http://www.statmt.org/wmt09/translation-task.html
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4.7.1 Baseline Systems

We compare our system with three baseline systems: i) Moses, ii) Phrasal and
iii) Ncode. A brief system description of each baseline along with its features
is given below:

Phrase-based Systems

Two of our baselines are the state-of-the-art phrase-based systems Moses and
Phrasal. Phrasal provides two main extensions to Moses: i) Hierarchical re-
ordering model ii) Discontinuous source and target phrases. The common fea-
tures used by both in the default configuration are:

1. Phrase translation model

• Direct phrase-translation probability p(e|f)

• Inverse phrase translation probability p(f |e)

• Direct lexical weighting plex(e|f)

• Inverse lexical weighting plex(f |e)

• Phrase penalty

2. Target-side language model

3. Word Penalty

4. Reordering model

• Distance-based reordering model

• Lexicalized Reordering (msd-fe-bidirectional)13

The default configuration of Moses uses a word-based reordering model with
phrase-based decoding, for the lexicalized reordering models.

13Using the three orientations: Monotonic, Swap and Discontinuous conditioned on both
source and target languages. Both backward and forward models are used.
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Phrasal uses a hierarchical reordering model (Galley and Manning, 2008).
The additional features (Galley and Manning, 2010) used in Phrasal to enable
discontinuous phrases are:

1. Source Gap Penalty: For a phrase having discontinuous source-side F =
f1, ..., fL, the source gap penalty calculates as:

d(F ) =
L∑
i=2

fi − fi−1 − 1

The default setting uses a hard limit of 15 which prevents the decoder
from hypothesizing phrases that have source gap penalty beyond 15
words. The source gap penalty feature sums the length of all source
gaps.

2. Target Gap Penalty: For a phrase having discontinuous target-side E =
e1, ..., eL, the source gap penalty calculates as:

d(E) =
L∑
i=2

ei − ei−1 − 1

The default setting uses a hard limit of 7 which prevents the decoder from
hypothesizing phrases that have target gap penalty beyond 7 words. The
target gap penalty feature sums the length of all target gaps.

3. Source Gap Count: Counts the number of phrases with discontinuous
source-side used, when translating a source sentence F .

4. Target Gap Count: Counts the number of phrases with discontinuous
target-side used, when translating a source sentence F .

5. Crossing Alignments: This feature is a count of discontinuous phrases
that have crossing alignments in the format cross-serial DTU and “bon-
bon” (See Figure 4.22 for illustration).
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Figure 4.22: Discontinuous Phrases Configurations (i) Cross-serial DTU (ii)
Bonbon

Among other defaults a stack size of 100 is used for Moses and 200 for
Phrasal. A 5-gram English language model (the same as in our system) is
used. Both systems use 20-best phrases for translation. A hard distortion limit
of 6 is used in the default configuration of both systems. The optimization of
the weight vector is done using MERT.

N-gram-based system

Our final baseline system is Ncode, the state-of-the-art N-gram-based system.
The features used in the default configuration14 are:

1. Bilingual language model of tuples (linearized)

2. Target-side language model

3. Tuple bonus model

4. Target word bonus model

5. Tuple (unigram) model

• Direct tuple-translation probability p(e|f) = count(e,f)
count(f)

• Inverse tuple translation probability p(f |e) = count(e,f)
count(e)

• Direct lexical weighting plex(e|f)

14http://perso.limsi.fr/Individu/jmcrego/bincoder/
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• Inverse lexical weighting plex(f |e)

6. Reordering Models

• Lexicalized Reordering Model

• Distortion Penalty |position(j)− position(j − 1)| − 1

A list of 25-best English translations for each tuple is used. The decoding is
done maintaining a stack size of 25. For a j word foreign sentence 2J stacks are
used. POS-based rewrite rules are extracted using a rule length of 6 tags. Source
and target sentences in the bilingual corpus are POS-tagged using tree-tagger
(Schmid, 1995). In order to make a fair comparison with our model, we removed
the lexicalized reordering model feature from the Ncode baseline. Although we
found that adding this feature mostly helps only a little (See Section 4.7.2
for the results of NCode with all its features). In all our experiments unless
mentioned explicitly, we do not use the lexical reordering feature for Ncode.
The optimization of the weight vector is done using MERT.

4.7.2 Results

In this section we will present the results, discussing different aspects of our
model in comparison with the three baseline systems. The evaluation is done
using BLEU (uncased) (Papineni et al., 2002).

Alignments

Word alignments for the experiments are generated with GIZA++ (Och and
Ney, 2003). In order to obtain the best alignment quality, the alignment task
is performed on the entire parallel data. We tried three symmetrization heuris-
tics namely, intersection, union and grow-diag-final-and (Koehn et al., 2005a).
We choose, Phrasal (with continuous phrases and the hierarchical reordering
model) as a representative of all the phrase-based baseline systems. Tables
4.3–4.5 indicate, that the alignments obtained by using the grow-diag-final-
and (GDFA) heuristic give the best results for both the phrase-based and

187



4 A Joint Sequence Translation Model with Integrated Reordering

N-gram-based systems as well as for our system. The systems with suffix “-
PP” means applying the post-processing heuristic (discussed in Section 4.4) to
the symmetrized alignments. See the next section for details.

Bilingual Data: 200K Sentences
Monolingual Data: 500K Sentences

System Union Intersect GDFA
Dev Test Dev Test Dev Test

Ncode 17.05 17.44 16.24 17.10 18.15 18.70
Ncode-PP 17.76 18.19 17.31 17.81 18.20 19.02
Phrasal 17.60 18.02 17.52 18.26 18.43 18.84

Phrasal-PP 17.81 18.37 17.73 18.39 18.23 19.04
Our System 18.26 18.37 17.69 17.84 18.97 19.19

Table 4.3: Comparison of Symmetrization Heuristics + post-processing heuris-
tic (PP) – German-to-English

Post Processing of Alignments

In Section 4.4, we discussed the heuristics that we apply in order to elimi-
nate the unaligned target words and target-side gaps from the symmetrized
word alignments. Without applying the post processing step we can not gener-
ate the operation sequence for a bilingual sentence, because Algorithm 1 does
not support discontinuous target units. In this section we will present exper-
iments to probe whether the post-processing heuristic is useful or hurts the
performance of the baseline systems. We carried out experiments applying the
post-processing heuristics to the translation task for all three language pairs
and all the symmetrization heuristics.
Refer to Tables 4.3–4.5. The results using symmetrized alignments are shown

in the baseline rows Ncode and Phrasal. The results after applying the post-
processing heuristics to the symmetrized alignments in the baseline systems
are shown as Ncode-PP and Phrasal-PP.
Most of our results indicate that our post editing of alignments is helpful in

improving the results. The most notable improvement is observed in the case
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System Union Intersect GDFA
Dev Test Dev Test Dev Test

Ncode 21.35 21.27 20.59 20.67 21.54 21.85
Ncode-PP 21.28 21.66 20.96 21.57 21.66 22.08
Phrasal 21.73 21.69 21.63 21.86 22.04 22.06

Phrasal-PP 21.48 21.68 21.69 21.83 21.98 21.91
Our System 21.35 21.66 20.95 21.89 21.86 22.36

Table 4.4: Comparison of Symmetrization Heuristics + post-processing heuris-
tic (PP) – Spanish-to-English

System Union Intersect GDFA
Dev Test Dev Test Dev Test

Ncode 20.81 20.16 20.40 19.75 21.08 20.86
Ncode-PP 20.70 20.41 20.53 19.96 21.10 20.62
Phrasal 20.44 20.81 20.57 19.95 20.93 20.94

Phrasal-PP 20.35 20.49 20.53 20.86 20.95 20.73
Our System 20.73 20.64 20.62 20.70 21.59 21.05

Table 4.5: Comparison of Symmetrization Heuristics + post-processing heuris-
tic (PP) – French-to-English

of the German-to-English (G-E) language pair. This can be explained by the
fact that the words in the discontinuous English cepts in the G-E bilingual
corpus are more distanced apart than in the other two language pairs. This
results in a loss of useful translation information.

Figure 4.23: Long Distance Gappy Cept

See the example in Figure 4.23. The German word “nachdruck” is wrongly
aligned with a gappy unit “my heart...emphatically”. To learn the translation of
“nachdruck”, both the phrase-based and the N-gram-based system has to learn
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a phrase/tuple “und das sage ich mit allem nachdruck – with all my heart , and
i must say this quite emphatically”. Because only a phrase with 6 or less words
is learned, the information describing how to translate “nachdruck” can not be
learned from this example. The scenario is worse for the N-gram model. Recall
Section 3.2.3, the embedded tuples15 (on the target-side) with long distance
discontinuities are collapsed to form a single tuple. The N-gram model would
not be able to learn any of the intervening tuples (“und – and”, “das – that”,
“sage – must say”) in this example. The post-processing heuristic preserves
these translation units by retaining the more valuable (sparse) link. For this
example, the heuristic removes the links “nachdruck – my” and “nachdruck –
heart” (because “my” and “heart” are more frequent vocabulary words than
“emphatically”).
Figure 4.24 shows the distribution of target-side discontinuous units in the

three language pairs. The X-axis shows the width of a target gap and the
Y-axis shows the frequency of tuples have that width. As can be seen, the
number of tuples having gap width of 5+ in German is twice as much as that
of Spanish and French.
Another reason for this result is the higher number of unaligned target-side

words in German-to-English bilingual data, which is more than twice that in
French-English and Spanish-English parallel data. Figure 4.25 shows statistics
on unaligned target words in each of the data sets.
The results also improve, although slightly, in case of the Spanish-to-English

(S-E) task and drop in the case of the French-to-English task. For all the
reported experiments in the next sections we use the GDFA symmetrization
heuristic with post-processed alignments for all the baseline systems, except for
the configuration of Phrasal that uses discontinuous source and target phrases.
For the configuration of Phrasal that does not use discontinuous phrases we
apply post-processing heuristic before feeding the alignments into the system.

15A solution to this problem as proposed in (Crego and Yvon, 2009) is to use split rules
(See Section 3.2.3 on Page 106) . The Ncode baseline system, however, does not support
this feature.
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Figure 4.24: Target-Side Discontinuous Units – X-Axis = Width of Target
Gap, Y-Axis = Frequency of Tuples having that Width – Series 1
= German, Series 2 = Spanish, Series 3 = French – Stats collected
from 1000K Parallel Data

Experiments Comparing Our Systems

In our initial results we compared the two variants of our system. Our first
system OSag uses all the features discussed in Section 4.3.3. In our second
system OS0 we eliminate the translation units with discontinuous source cepts
from the list of 10-best English translations, and disable the source gap penalty
feature. Both our systems do not apply any hard limit on reordering and also
do not put any hard constraint on the size of the discontinuous source cepts
in the system OSag.
From the results in Table 4.6, we found that our system with gappy cepts

OSag does not help improve performance over its counter part which does not
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Figure 4.25: Target-Side unaligned Units – Statitics collected from 1000K Par-
allel Data

Bilingual Data: 200K Sentences
Monolingual Data: 500K Sentences

OSag OS0
Dev Test Dev Test

DE 18.26 18.81 18.97 19.19
ES 21.72 22.10 21.86 22.36
FR 21.56 21.09 21.59 21.05

Table 4.6: Comparison of Our Systems – DE = German, ES = Spanish, FR =
French

use discontinuous translation units. The accuracy of our system OSag drops
in the G-E and S-E translation results, and stays the same in the case of F-E
task. In an analysis of the output we found the following reasons for this result:

• Using tuples with source gaps increases the list of extracted n-best trans-
lation tuples multiple times making the search problem even more dif-
ficult. Table 4.7 shows the number of tuples (with and without gaps)
extracted when decoding the test file with 10-best translations.

• We observed that many of the tuples with gappy source cepts were wrong
alignments. For example “der...die – which” has appeared more than
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Source German Spanish French
OSag 965515 1705156 1473798
OS0 256992 313690 343220

Table 4.7: 10-best Translation Options With & Without Gaps and using our
Heuristic

400 times in the tuple corpus. With the help of the source gap penalty
we are able to deal with such tuples. However, given the poor future
cost estimate our model has, it is hard to completely eliminate these
during stack pruning. They consume the stack space and prune potential
hypotheses that, if allowed to continue, may turn out to be the best
hypothesis in the end. Table 4.8 shows the MERT tuned vector and the
count of the source gap penalty feature (SG) obtained in dev and test
sets. The value of SG feature penalizes more in case of the French-to-
English task, which helps in eliminating the gappy units effectively from
the search space, giving the same translation accuracy as the system that
uses no gappy units. In comparison the value of the SG feature is less
penalizing in case of S-E and even less in the G-E task, resulting in a
higher number of search errors, which causes a drop in the translation
accuracy.

• The future cost is poorly estimated in the case of tuples with gappy
source cepts, causing search errors. The dynamic programming approach
of calculating the future cost for bigger spans gives erroneous results
when gappy cepts can interleave. Refer back to Section 4.5.3 for the
discussion of future cost estimation with discontinuous units.

Comparison with the Baseline Systems

In this section we compare our system with only continuous cepts (OS0) with
the three baseline systems. In order to make a fair comparison, we provide
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Final Vector SGP
{LM, OP, PM, Lex-F, Lex-E, LB, DP, GP, OG, RP, GD, SG} Dev Test

DE {1.0 0.90 0.079 0.93 0.54 2.15 -2.14 -0.02 -0.07 -0.02 -0.02 -0.05} 218 192
ES {1.0 0.65 -0.37 0.58 0.93 0.78 0.88 -0.53 0.24 0.34 -0.73 -0.67} 37 67
FR {1.0 0.65 -0.17 0.68 0.79 1.1 0.82 0.086 0.68 0.34 -0.97 -2.59} 13 11

Table 4.8: MERT-tuned Feature Vector for OSag Systems and Source Gap
Penalty Count (SGP) – LM = Target-Side Language Model, OP
= Operation Model, PM = Prior Probability Model, Lex-F =
log(plex(e|f)), Lex-E = log(plex(f |e)), LB = Length Bonus, DP =
Deletion Penalty, GP = Gap Penalty, OG = Open Gap Penalty, RP
= Reordering Penalty, GD = Gap Distance Penalty, SG = Source
Gap Penalty

the baseline systems with the same alignments as ours i.e., applying GDFA
symmetrization and post-processing heuristics. For the configuration of Phrasal
that uses discontinuous phrases, we do not apply the post-processing heuristic,
because having the ability to learn discontinuous phrases on both source and
target-side, enables Phrasal to avoid data sparsity and loss of information,
discussed in the previous section.
The experiments are done on three different data scales. In the small data

configuration we use 200K sentences of parallel data and 500K sentences of
monolingual English data. In the medium data configuration we use 500K
sentences of parallel data and 1M sentences of monolingual English data. In the
large data configuration we use 1M sentences of parallel data and 2M sentences
of monolingual English data. In all the configurations, the monolingual data
contains the English part of the bilingual data + additional monolingual data
from Europarl.
We used Kevin Gimpel’s tester16 which uses bootstrap resampling (Koehn,

2004b) to test which of our results are significantly better over which of the

16http://www.ark.cs.cmu.edu/MT/
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Moses Phrasal Phrasald Ncode OS0
Dev Test Dev Test Dev Test Dev Test Dev Test

S 18.36* 18.97 18.23* 19.04 18.43* 18.97 18.20* 19.02 18.97 19.19
M 18.89* 19.11* 19.13 19.29* 19.17 19.88 18.64* 19.28* 19.32 20.11
L 19.79 20.15 19.76 19.92* 20.05 20.45 19.16* 19.77* 19.64 20.31

Table 4.9: Comparison of German-to-English on (S)mall, (M)edium and
(L)arge Scaled Data – Small = 200K Parallel Data, 500K Monolin-
gual English Data – Medium = 500K Parallel Data, 1000K Mono-
lingual English Data – Large = 1000K Parallel Data, 1000K Mono-
lingual English Data

Sentences Moses Phrasal Phrasald Ncode OS0
MT07 2002 24.26* 24.79 25.02 24.27* 24.85
MT08 2039 19.54 19.37 19.64 19.01* 19.53
MT09 2987 18.73* 18.45* 19.00 18.36* 19.18
MT10 2470 18.58* 18.37* 18.96 18.86 19.08
MT11 2975 17.38* 17.12* 17.58 17.39* 17.84

Table 4.10: Comparison of German-to-English on 5-Test Sets (Large Scaled
Data)

baseline results. We mark a baseline “*” representing that our model shows a
significantly better improvement over this baseline result with a confidence of
p < 0.05 . We use 1000 samples during bootstrap resampling.
Tables 4.9 and 5.2 show that our German-to-English results are better than

all the baseline systems, except Phrasal with discontinuous phrases (phrasald)
where the performance of our system is similar to that of Phrasal. All our
shared-task results are significantly better than the Ncode baseline results
showing that our model is better able to handle language pairs with high
reordering. In Figure 4.26, for example, the verb final “investiert – invested”
is successfully reordered to its correct position in our system that applies a
reordering pattern “haben investiert – have invested”. The Ncode system
is unable to trigger a POS rule to hypothesize “investiert – invested” after
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Source Beide Länder haben Millionen von Dollar in die Untersuchungen investiert
Ref Both countries invested millions of dollars into surveying.

Moses Both countries have millions of dollars in the investigation.
Phrasal Both countries have invested millions of dollars in the investigation.
Ncode Both countries have millions of dollars invested in the investigations.

OS0 Both countries have invested millions of dollars in the investigation.

Figure 4.26: Example-1 from Test MT09 – Demonstrating the Better Reorder-
ing Mechanism

Source Ihre Tanzgrundlagen haben mir in Flamenco viel geholfen.
Ref Her dances ’ titles suggested me some elements of Flamenco.

Moses I have their Tanzgrundlagen in Flamenco much help.
Phrasal I have been in their Tanzgrundlagen Flamenco much help.
Phrasald Their Tanzgrundlagen have helped a lot in Flamenco me.
Ncode I have their Tanzgrundlagen in Flamenco much help.

OS0 Their Tanzgrundlagen have helped me a great deal in Flamenco.

Figure 4.27: Example-2 from Test MT09 – Demonstrating Better Reordering
Mechanism

“haben – have” is inserted. The output in Moses drops the main verb, an error
that we frequently observed in the output of Moses. Phrasal is able to apply
a discontinuous phrase “haben X investiert – have invested” to produce the
correct output just as our system did.
Figure 4.27 depicts another example where the verb “geholfen – helped” is

correctly reordered after auxiliary “haben – have”, only by our system because
of its strong ability to represent the dependency between “haben – have” and
“geholfen – helped”. Strong reliance on the language model to guide reordering
hampers the performance of other systems in this case because of the presence
of two unknown words “Flamenco” and “Tanzgrundlagen” in the source sen-
tence. The language model is unable to compensate for the dis-preference of
the translation model for non-local reordering and its strong bias towards the
phrasal unit “viel geholfen – much help”.
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Source die USA haben bereits signalisiert, dass
sie über konkrete Zahlen nicht verhandeln wollen

Ref The United States has let it be known that
it is unwilling to negotiate precise numbers

Moses The United States has already indicated that
they have concrete figures do not want to negotiate

Phrasal The US have already indicated that
they do not want to negotiate on specific figures

Ncode The United States have already indicated that
they have concrete figures do not want to negotiate

OS0 The US have already indicated that
they do not want to negotiate on specific figures

Figure 4.28: Example-3 from Test MT08 – Demonstrating Ability to Memorize
Phrases

Our model exhibits complex reordering in this example. After the insertion
of “haben – have”, the model must jump to the end of the sentence to cover
the verb final “geholfen – helped”. A gap is inserted for the skipped sequence of
words “mir in flamenco viel” which consists of the object of the sentence “mir –
me”, an adverbial phrase (AP) “viel – a great deal” and a prepositional phrase
(PP) “in Flamenco – in Flamenco”. After generating “geholfen – helped” the
translator jumps back and generates the object “mir – me” and then inserts
another gap (for the prepositional phrase) and generates the adverbial phrase.
The translator finally jumps back to the open gap and generate “in Flamenco”.
The discontinuous phrase-based system is able to capture the dependency

between “haben – have” and “geholfen – helped” through a discontinuous
phrase “haben X geholfen – have helped”, however it is not able to displace
the object “mir – me” to its correct position. The lexicalized reordering model
is unable to justify the jump from “geholfen” to “mir”.
In Figure 4.28, we demonstrate the ability of our model to memorize and

displace phrasal units just as the phrase-based system. Notice that although
our model is using smaller translation units “nicht – do not”, “verhandlen –
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negotiate” and “wollen – want to”, it is able to memorize the phrase translation
“nicht verhandlen wollen – do not want to negotiate” as a sequence of trans-
lation and reordering operations. And it is able to successfully displace the
whole unit over the prepositional phrase “über konkrete Zahlen – on specific
figures” capturing both local and non-local dependencies.

Moses Phrasal Phrasald Ncode OS0
Dev Test Dev Test Dev Test Dev Test Dev Test

S 21.88 21.97* 21.98 21.91* 22.01 21.93* 21.66 22.08 21.86 22.36
M 22.29 22.89 22.51 22.71 22.83 23.17 22.60 22.84 22.23 22.98
L 23.10 23.38 23.41 23.81 23.62 23.76 22.96 23.30 22.90 23.47

Table 4.11: Comparison of Spanish-to-English on (S)mall, (M)edium and
(L)arge Scaled Data

Sentences Moses Phrasal Phrasald Ncode OS0
MT07 1997 34.81 35.46 35.05 34.21 34.41
MT08 2035 22.87 23.12 23.17 22.75 22.82
MT09 2935 24.38 24.59 24.63 24.71 24.39
MT10 2470 25.55 25.78 25.66 25.72 25.66
MT11 2960 25.72* 26.14 26.17 26.32 26.25

Table 4.12: Comparison of Spanish-to-English on 5-Test Sets (Large Scaled
Data)

Our results from the Spanish-to-English translation task are shown in Tables
4.11 and 4.12 and the French-to-English translation task are given in Tables
4.14 and 4.15.
Our Spanish-to-English system has roughly the same translation quality as

the other baseline systems. Our results do not show statistically significant
improvements over baselines. In some cases our results are worse than the
other systems.
In three out of six test-sets (dev-test, MT07 and MT08), our results are

slightly better than NCode. In the other three the NCode system is better.
Compared to Moses our results are slightly better on three test-sets (dev-test,
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JumpSize German Spanish French
0 21005591 23925136 24982196
1 2950802 5208091 4648931
2 2001122 2034345 1980326
3 1358259 1183803 1187276
4 951518 677759 696869
5 707524 414637 461838
6+ 3031509 1463074 1816495

Table 4.13: Statistics on Reordering Distances in German, Spanish and French
calculated from Bilingual Training Corpus

MT10 and MT11). On the test set MT07 Moses shows a statistically significant
improvement over our results.

Moses Phrasal Phrasald Ncode OS0
Dev Test Dev Test Dev Test Dev Test Dev Test

S 20.86* 20.60* 20.95* 20.73 21.00* 20.82 21.10* 20.62* 21.59 21.05
M 21.33* 21.37 21.62* 21.64 21.85 21.79 21.64 21.55 22.00 21.51
L 21.78 21.96 22.09 21.89 22.20 21.98 22.08 21.67 21.98 21.81

Table 4.14: Comparison of French-to-English on (S)mall, (M)edium and
(L)arge Scaled Data

The results from both continuous and discontinuous Phrasal systems (which
use Galley’s hierarchical reordering model) show best results on the Spanish-
to-English task. In five out of six test-sets Phrasal shows better results than
ours. However, a noteworthy point is that using discontinuous phrases does
not yield any better results than using only the contiguous phrases on the
Spanish-to-English task.17 Using discontinuous phrases showed statistically
significant improvements over using continuous phrases, in some cases (MT08
and MT09) in the German-to-English translation task. These results can be

17We used the default source and target gap sizes of 15 and 7 respectively. Perhaps tuning
these for the Spanish-to-English task yield better results.
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Sentences Moses Phrasal Phrasald Ncode OS0
MT07 1994 28.54 28.97 29.28 28.33 28.25
MT08 2031 21.19 21.29 21.28 21.25 21.30
MT09 2970 24.61* 24.51* 24.73* 24.28* 25.06
MT10 2460 23.69* 22.74* 23.09* 23.96 24.04
MT11 2957 25.17* 25.15* 25.55 24.92* 25.58

Table 4.15: Comparison of French-to-English on 5-Test Sets (Large Scaled
Data)

explained by the fact that Spanish and English have relatively similar word
order and require less reordering. In comparison the German–English language
pair exhibits a lot of reordering. Short distance reorderings of 3-4 words can be
effectively captured inside phrases, however the translation model in the con-
tinuous phrase-based system can not capture long distance reordering. These
reorderings have to be justified by the reordering model and language model
scores. The discontinuous phrase-based system is able to represent these long
distance dependencies inside of the translation model.
In order to measure the amount of reordering in the three language pairs,

we stored the jump sizes (reordering distances) between two tuples along with
their frequencies in the bilingual training corpus. See Table 4.13 for statistics.
A jump size of 0 indicates that the next tuple is generated monotonically.
As evident from the statistics, French and Spanish are more monotonic than
German. The number of cases with a jump distance of 6+ in Spanish is half
than in German. French is closer to Spanish but has more cases of long-range
reordering. The number of cases with a jump distance of 3, 4 and 5 words is
also higher in the case of German-English bilingual data.
Our French-to-English results show significantly better improvement over

the Moses and Phrasal baselines for three test-sets (MT09, MT10 and MT11)
and for two test-sets (MT10 and MT11) for the Ncode baseline. On the MT07
baseline both Moses and Phrasal show better performance.
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N-Gram System with additional Features

Ncode Ncodel Ncodel+p OS0
Dev 19.16* 19.26* 19.15* 19.64

Dev-Test 19.77* 19.71* 20.01 20.31
MT07 24.27* 24.21* 24.34* 24.85
MT08 19.01* 19.12* 19.18* 19.53
MT09 18.36* 18.37* 18.65* 19.18
MT10 18.86 18.64* 18.94 19.08
MT11 17.39* 17.49* 17.72 17.84

Table 4.16: Comparison to Full N-gram System l = Lexical Reordering, l+p
= Lexical Reordering + POS-based bilingual Model – German-to-
English

In Section 4.7.2, we presented the results for the N-gram system by disabling
the lexical reordering feature. Our purpose was to directly compare the two
reordering mechanisms. In this section we load the N-gram model with addi-
tional features namely lexicalized reordering and adding a POS-based model
trained on bilingual tuple corpus of source and target POS-tags, as presented
in Crego and Yvon (2010).

Ncode Ncodel Ncodel+p OS0
Dev 22.96 23.17 23.20 22.90

Dev-Test 23.30 23.78 23.48 23.47
MT07 34.21 34.75 34.82 34.41
MT08 22.75 23.05 22.87 22.82
MT09 24.71 24.72 24.61 24.39
MT10 25.72 25.87 25.77 25.66
MT11 26.32 26.36 26.48 26.25

Table 4.17: Comparison to Full N-gram System l = Lexical Reordering, l+p
= Lexical Reordering + POS-based bilingual Model – Spanish-to-
English

Table 4.16 shows that adding the lexicalized reordering model to Ncode does
not yield statistically significant improvements. Our gains on the German-
to-English task remain significantly better over Ncode with the lexicalized
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reordering model for all the test-sets. Adding a POS-based tuple model however
shows improvements over the baseline Ncode system in three test-sets (Dev-
test, MT10 and MT11). But the performance of our system is still better than
Ncode system with lexicalized reordering and POS-based tuple model.
Using the lexicalized reordering model however, shows statistically signifi-

cant improvements for the Spanish-to-English task in some test-sets (Dev-test
and MT07). Using these additional features the Ncode model gives better per-
formance than our system for all the test-sets.

Ncode Ncodel Ncodel+p OS0
Dev 22.08 22.17 22.19 21.98

Dev-Test 21.67 21.75 21.40 21.81
MT07 28.33 28.01 28.46 28.25
MT08 21.25 21.34 21.10 21.30
MT09 24.28* 24.63* 24.05* 25.06
MT10 23.96 24.02 23.81* 24.04
MT11 24.92* 25.17* 24.68* 25.58

Table 4.18: Comparison to Full N-gram System l = Lexical Reordering, l+p
= Lexical Reordering + POS-based bilingual Model – French-to-
English

In case of the French-to-English task, the lexicalized reordering feature sig-
nificantly improves the performance on MT09 and gives slight gains on the
other test-sets. However, the performance of our system is still significantly
better over NCode with lex and lex + POS system on MT09 and MT11.

Experiments on Distortion Limit

Mosesdl=6 Mosesno−dl OSgd=6 OS0
Dev Test Dev Test Dev Test Dev Test

200K 18.36 18.97 17.01 17.61 18.79 19.13 18.97 19.19
500K 18.89 19.11 17.72 18.47 19.32 19.94 19.32 20.11
1000K 19.99 20.15 17.44 18.67 19.80 20.14 19.64 20.31

Table 4.19: Experiments on Distortion Limit – German-to-English
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Mosesdl=6 Mosesno−dl OSgd=6 OS0
Dev Test Dev Test Dev Test Dev Test

200K 21.88 21.97 20.23 20.02 21.86 21.87 21.86 22.36
500K 22.29 22.89 20.47 21.33 22.29 22.92 22.23 22.98
1000K 23.10 23.38 20.94 21.56 22.70 23.37 22.90 23.47

Table 4.20: Experiments on Distortion Limit – Spanish-to-English

Mosesdl=6 Mosesno−dl OSgd=6 OS0
Dev Test Dev Test Dev Test Dev Test

200K 20.86 20.60 19.32 19.49 21.21 20.98 21.59 21.05
500K 21.33 21.37 19.36 19.62 21.99 21.51 22.00 21.51
1000K 21.78 21.96 20.49 20.72 21.84 21.86 21.98 21.81

Table 4.21: Experiments on Distortion Limit – French-to-English

In the tables 4.19–4.21 we do a comparison between our system and the
phrase-based system without hard reordering limit. We also present a variation
of our system (OSgd=6) where, like the phrase-based systems, we apply a hard
constraint which limits reordering to no more than 6 positions. Specifically,
we do not extend hypotheses that are more than 6 words apart from the first
word of the left-most gap during decoding. In other words we do not extend
hypotheses that have a gap distance penalty of more than 6 words. For the
baseline experiments, we choose Moses as a representative of the other baseline
system, Phrasal18.
Tables 4.19–4.21 show that the result for the phrase-based system drop by

more than 1 BLEU point without the hard reordering limit. In comparison our
system (OS0) without any hard reordering limit shows the same performance
as that of the system with hard reordering limit (OSgd=6). In fact the results

18The assumption is that the underlying model and features in Phrasal are the same as the
Moses and that Phrasal will have the same problem as Moses. Moreover running Phrasal
with discontinuous phrases and without a hard reordering limit will require a lot of days
to run MERT training.
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Source Die EZB ist bestrebt, die Inflationsrate unter zwei Prozent,
oder zumindest knapp an der zwei-Prozent-Marke zu halten.

Ref The ECB wants to hold inflation to under
two percent, or somewhere in that vicinity.

Moses The ECB is endeavouring, the rate of inflation below two
per cent, or at least less than in the zwei-Prozent-Marke.

Phrasal The ECB is striving to the rate of inflation below two
per cent, or at least in the short zwei-Prozent-Marke.

Ncode The ECB is striving to inflation below 2%, or at least
to keep running out of the zwei-Prozent-Marke.

OS0 The ECB is anxious to keep inflation under 2% ,
or at least close to the zwei-Prozent-Marke.

Figure 4.29: Example-4 from Test MT08 – Where No Reordering Limit Helps

Source Anderson nahm 32 erstklassige Wickets mit je 33 Runs,
um eine Position in dieser Tour zu verdienen.

Ref Anderson took 32 first-class wickets at 33 runs
each to earn a place on this tour.

Moses Anderson, 32 first-rate wickets with the 33 runs,
a position in this tour to earn .

Phrasal Anderson , 32 first-rate wickets with ever 33 runs,
a position on this tour .

Ncode Anderson took wickets 32 first-rate with ever 33 runs,
in order to earn a position in this way.

OS0 Anderson took 32 first-rate wickets with ever 33 runs,
in order to earn a position on this tour.

Figure 4.30: Example-5 from Test MT08 – Where No Reordering Limit Helps
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in case of German-to-English translation task are better for the system with
no reordering limit.
Figure 4.29 demonstrates an example where having no distortion limit is

helpful. Our system without a reordering limit moves the verb-phrase “zu
halten” by jumping over 12 English tokens to generate the English verb-phrase
“to keep” at its correct position after generating “ Die EZB ist bestrebt, – The
ECB is anxious”.
Another example is shown in Figure 4.30, where our system is able to dis-

place the verb phrase “zu verdienen” over 7 words to place the English verb
phrase “to earn” in its correct position. The hard distortion limit in Moses and
Phrasal restricts them from generating the hypothesis “to earn” in its correct
place.

Contribution of Feature Functions

In this section we study the contribution of each feature in the overall per-
formance of the system. We removed the features from our main system OS0

in groups and report the accuracy without the removed group of features. We
tested our system without prior probability model (OSpm), without lexical
probability models (OSlex), without gap and open gap features (OSgp−og)
and without the distance-based penalty features i.e., reordering distance and
gap distance (OSrd−gd). The effect of removing source word deletion model
and its related deletion penalty feature is also studied. The role of the language
model in our system and the phrase-based system is reported at the end.
Table 4.22 shows the contribution of each set of features in the three lan-

guage pairs. Removing the prior probability model yields roughly the same
results as our full model. All the other set of features contribute towards
the BLEU score. Removing the IBM-1 lexical probability models results in
a drop of 2.35 BLEU points in the German-to-English task, 4 BLEU points in
Spanish-to-English task and 0.73 BLEU points in the French-to-English task.
The reordering-based gap and open gap penalties help to control the unjus-
tified long-distance reorderings, evidence of which is not obtained from the
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Bilingual Data: 500K Sentences
Monolingual Data: 1000K Sentences

OSpm OSlex OSgp−og OSrd−gd OS0
Dev Test Dev Test Dev Test Dev Test Dev Test

DE 19.50 20.10 17.08 17.76 19.28 19.88 18.30 18.52 19.32 20.11
ES 22.11 22.81 18.53 18.95 21.99 22.81 20.12 20.46 22.23 22.98
FR 21.94 21.55 21.30 20.78 21.49 21.04 20.11 19.70 22.00 21.51

Table 4.22: Contribution of Different Feature Functions

operation and monolingual language model scores. Removing these two fea-
tures consistently drop the translation quality. The distance-based penalties
are important to enable no hard distortion limit during decoding. Removing
these features results in a drop of more than 1.5 BLEU points in our system
with no hard reordering limit. However, if we use the hard-reordering limit,
removing these features does not hurt. Refer back to our system OSgd=6 in the
Tables 4.19–4.21, which does not use the gap distance and reordering distance
penalties as soft-constraint. Using a window of 6 or less jumps, dramatically
reduces decoding complexity and cuts the search space by multiple folds. This
results in a lower number of search errors. Not using gap and reordering dis-
tance penalties as a soft constraint in our system OS0 causes massive search
errors, and a drop in the translation quality.

Bilingual Data: 1000K Sentences
Monolingual Data: 2000K Sentences

OSgd=6 OSgd=6 −PP
Dev Test Dev Test

DE 19.80 20.14 19.75 20.22
ES 22.70 23.37 22.64 23.53
FR 21.84 21.86 21.66 21.64

Table 4.23: Removing Source Word Deletion Model
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Source Word Deletion: In order to evaluate the effect of the source word
deletion model in our generative story and the deletion penalty feature, we
removed the source-unaligned tuples (where a source word is aligned to null).
Such tuples are represented through Generate Source Only(X) operation
in our operation corpus. To remove this operation from the operation corpus
we modified the alignments by applying a post-processing step that removes
the source-unaligned tuples (where a source word is aligned to null). To achieve
this, we flip the alignments and apply the procedure discussed in Section 4.4
and then flip the alignments again before generating the operation corpus.
The post-processing step removes all source and target unaligned words by
connecting them to the left or right tuples based on the counts collected in
a preprocessing step. Table 4.23 gives results (OSgd=6 − PP) after applying
the post-processing heuristic on the source-side of the bilingual corpus. The
results on all language pairs are consistent and show that not using a source
word deletion model and deletion penalty does not hurt. All the results stay
roughly the same with a difference of +/- 0.25 BLEU points.

Bilingual Data: 1000K Sentences
Monolingual Data: 2000K Sentences

OSgd=6−LM MosesLM NCodeLM
Dev Test Dev Test Dev Test

DE 17.93 18.00 16.44 16.61 17.20 17.70
ES 20.80 21.48 19.94 19.87 20.50 20.66
FR 19.70 19.69 17.86 17.82 19.47 19.13

Table 4.24: Removing Monolingual Language Model Features from Moses,
NCode and Our System

Monolingual Language: In another experiment we removed the monolingual
language model feature from both our system and Moses. We also removed the
prior probability model feature from our system to ensure that no assistance,
to judge the fluency of English translations, is provided to both systems other
than their translation models. The purpose of this experiment was to measure
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the strength of the translation models, and their reliance on the monolingual
language model, in the two frameworks.
Table 4.24 shows that the results of the baseline systems and our system

without the language model feature. All results drop significantly as compared
to their counterparts where the language model feature was used. However, the
results in the phrase-based system (Moses−LM), without the language model
are much worse than our system (OSgd=6−LM) without the language model
and prior probability model features. This shows the weakness of lexicalized
reordering models, as used in phrase-based SMT. The model only learns how
a phrase was translated with respect to their previous and next phrase, and
makes independence assumptions over previously translated phrases. It does
not take into account how the previous words were translated and reordered.
The reordering model relies heavily on the language model to get the correct
word order. In comparison, our system models the dependencies better by
taking into account how previous tuples were translated and reordered.

System Settings

In this section, we study the behavior of our system by tweaking different pa-
rameters such as language model orders, stack sizes and number of translation
options for each source cept.

Bilingual Data: 500K Sentences
Monolingual Data: 1000K Sentences

Lang Operation Model Order : Monolingual Language Model Order
2:2 2:3 3:3 4:4 3:5 5:5 7:5 9:5

DE 19.25 19.72 20.17 20.12 20.19 20.11 20.11 20.11
ES 22.07 22.27 22.06 22.16 22.23
FR 21.90 21.92 21.93 21.87 22.00

Table 4.25: Contribution of Different Feature Functions
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Language Model Orders: Table 4.25 shows our findings from running exper-
iments with different combinations of orders of monolingual language model
and operation sequence model. From the results we found that using bilingual
language model order for both the models hurts performance. We tried to use
a tri-gram model for the monolingual language model as commonly used and
a bigram model for the operation sequence model. This however, gives signif-
icantly worse results than our baseline system (OS0). We found that using a
trigram language model for German-to-English gives equally good results as
our baseline system for German-to-English. For the Spanish-to-English task
the results are slightly worse though and require 4-gram models. In case of
French-to-English the results oscillate with a difference of +/- 0.1 BLEU point
using 3-to-9gram order for the operation sequence model. These results are
inconclusive apart from the fact that going below trigram model worsens the
results. We therefore persisted with using 5-gram as the order of the mono-
lingual language model and 9-gram as the order of the operation sequence
model.

Bilingual Data: 1000K Sentences
Monolingual Data: 2000K Sentences

Stack German Spanish French
Size OS0 Moses Phrasal OS0 Moses Phrasal OS0 Moses Phrasal
50 19.86 19.99 19.88 22.79 23.33 23.76 21.62 21.92 21.88
100 20.06 20.15 19.90 23.05 23.38 23.81 21.78 21.96 21.89
250 20.20 20.17 19.92 23.34 23.33 23.79 21.79 21.96 21.89
500 20.31 20.17 19.94 23.47 23.32 23.78 21.81 21.95 21.89

Table 4.26: Translation Quality of Our System and Moses with different Stack
Sizes

Stack Size: Table 4.26 shows results from running experiments with different
stack sizes. Our findings are consistent with Costa-Jussà et al. (2007) who
report a drop in the performance of N-gram-based SMT when smaller beam
sizes are used. Using higher stack size is essential when decoding with minimal
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units in order to produce larger phrasal units. Our results from running Moses
and Phrasal with different stack sizes is consistent with (Koehn and Haddow,
2009) and other shared task papers that show that a stack size of 200 and
above does not have a significant effect on translation into English.

Bilingual Data: 1000K Sentences
Monolingual Data: 2000K Sentences

German Spanish French
5 19.78 23.13 21.78
10 20.31 23.47 21.81
20 20.13 23.35 21.82
30 19.99 23.36 21.82

Table 4.27: Translation Quality of Our System Varying the Number of Trans-
lation Options

Translation Options: Table 4.27 shows our findings from running experi-
ments by varying the number of translation options for a source cept. In the
German-to-English translation task using a higher number of translation units
worsens the translation score. In comparison the results remain stable in case
of the Spanish and French-to-English translation tasks. This can be explained
by the large amount of reordering required in German-to-English which makes
the search space much more populated than that in French and Spanish where
the source sentence is generated more or less monotonically.

4.8 Chapter Summary
In this chapter we comprehensively presented a novel model for statistical SMT
which can be used as an alternative to phrase-based translation. The model
inherits its fundamentals from N-gram-based SMT, in the sense that it is also a
joint probability model and uses minimum translation units. However, we pro-
pose a better reordering mechanism that handles long distance reordering more
effectively than the phrase-based and its predecessor N-gram-based model.
Our model tightly couples translation and reordering into a single generative
story. The generative story also provides a mechanism to handle discontinuous
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source-side cepts and unaligned source words through a source word deletion
model. Our system, however can not handle target-side discontinuous cepts
and unaligned target units. We proposed a heuristic to overcome this prob-
lem. With the help of distance-based features, our model is able to correctly
reorder words across large distances beyond a window of 6 words. Our system
is based on minimal units but it can memorize frequent phrasal translations
including their reordering as probable operations sequences. In the evaluation
we found that our model outperforms the state-of-the art phrase-based and N-
gram-based systems on the German-to-English translation task and achieves
comparable results for Spanish-to-English and French-to-English. The contents
of this chapter were presented at ACL 2011 in Durrani et al. (2011).
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5 Operation Sequence Model
With Phrase-based Decoding

While the operation sequence model provides a better model that captures
both source and target contexts and avoids spurious phrasal segmentation, the
ability to memorize and produce larger translation units gives an edge to the
phrase-based systems during decoding, in terms of better search performance
and superior selection of translation units. In this chapter we combine opera-
tion sequence modeling with phrase-based decoding, and obtain the benefits of
both approaches. Our experiments show that using this combination not only
improves the search accuracy of the operation sequence model but that it also
improves the BLEU scores. Our system outperforms state-of-the-art phrase-
based (Moses and Phrasal) and N-gram-based systems by a significant margin
on German, French and Spanish to English translation tasks.

5.1 Introduction
Phrase-based systems employ a simple and effective machinery by learning
larger chunks of translation called phrases. Memorizing larger units enables
the phrase-based model to learn local dependencies such as short reorder-
ings, idioms, insertions and deletions, etc. The model however, has the follow-
ing drawbacks: i) it makes independence assumptions over phrases ignoring
the contextual information outside of phrases ii) it has issues handling long-
distance reordering iii) it has the spurious phrasal segmentation problem which
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allows multiple derivations of a bilingual sentence pair having different model
score for each segmentation.
Modeling with minimal translation units helps the operation sequence model

address these issues. The operation sequence model is a Markov model over se-
quences of operations encapsulating tuples. This mechanism has several useful
properties. Firstly, no phrasal independence assumption is made. The model
has access to both source and target context outside of phrases. Secondly the
model learns a unique derivation of a bilingual sentence given its alignments,
thus avoiding the spurious segmentation problem.
Using minimal translation units, however, makes the search much more dif-

ficult because of the i) poor translation selection, ii) inaccurate future cost
estimates and iii) incorrect pruning of correct hypotheses. In order to deal
with these problems, we used a higher beam size of 500 during decoding in the
last chapter.
The ability to memorize and produce larger translation chunks during decod-

ing, on the other hand, gives a distinct advantage to the phrase-based system
during search. Phrase-based systems i) have access to uncommon translations,
ii) do not require higher beam sizes, iii) have more accurate future cost es-
timates because of the availability of phrase-internal language model context
before search is started. To illustrate this consider a phrase pair “schoß ein Tor
– scored a goal”, consisting of units “schoß – scored”, “ein – a” and “Tor – goal”.
It is likely that the N-gram system does not have the tuple “schoß – scored”, in
its n-best translation options, because it is an uncommon translation . Even if
“schoß – scored” is hypothesized, it will be ranked quite low in the stack until
“ein” and “Tor” are generated in the next steps. A higher beam is required
to prevent it from getting pruned. Phrase-based system on the other hand is
likely to have access to the phrasal unit “schoß ein Tor – scored a goal” and
can generate it in a single step. Moreover, an accurate future cost estimate can
be computed because of the available context, internal to the phrase.
In this chapter, we extend the operation sequence decoder (Durrani et al.,

2013c), to use phrases during decoding. The main idea is to study whether
a combination of modeling with minimal translation units and using phrasal
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information helps solving the above-mentioned problems. Our results show
that phrasal information leads to improved search accuracy and translation
quality.
The remainder of this chapter is organized as follows. Section 5.2 revisits

a comparison of phrase-based and N-gram-based SMT in the perspective of
search. Section 5.3 gives an account on the search problem when decoding
with minimal units. Section 5.4 discusses how information available in phrases
can be used to improve the search performance. Section 5.5 presents the results
of this work. We conducted experiments on the German-to-English and French-
to-English translation task and found that using phrases in decoding improves
both search accuracy and BLEU scores. Finally we compare our system with
two state-of-the-art phrase-based systems (Moses and Phrasal), state-of-the-
art N-gram-based system (Ncode) and the operation sequence model using
cept-based decoding on three standard translation tasks.

5.2 Comparison of N-gram-based and
Phrase-based Frameworks

Phrase-based and N-gram-based SMT are alternative frameworks for string-to-
string translation. Phrase-based SMT segments a bilingual sentence pair into
phrases that are continuous or discontinuous sequences of words (Galley and
Manning, 2010). These phrases are then reordered. The translation probabili-
ties are modeled through maximum likelihood estimates.The reordering model
is instantiated through a distortion penalty and through a lexicalized reorder-
ing model that takes into account the orientation of a phrase with respect to
its previous phrase (Tillmann and Zhang, 2005) or block of phrases (Galley
and Manning, 2008).
There are several drawbacks of the phrase-based model. Firstly it makes an

independence assumption over phrases, according to which phrases are trans-
lated independently of each other, thus ignoring the contextual information
outside of the phrasal boundary. Secondly the model is unaware of the ac-
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Figure 5.1: Different Segmentations of a Bilingual Sentence Pair

tual phrasal segmentation of a sentence during training. It therefore learns all
possible ways of segmenting a bilingual sentence. Different segmentations of a
bilingual sentence result in different probability scores for the translation and
reordering models, causing spurious ambiguity in the model. See Figure 5.1 for
example. In the first segmentation, the model learns the lexical and reorder-
ing probabilities of the phrases “sie würden – they would” and “gegen ihre
kampagne abstimmen – vote against your campaign”. In the second segmen-
tation, the model learns the lexical and reordering probabilities of the phrases
“sie – they” “würden – would”, “abstimmen – vote”, “gegen ihre kampagne –
against your campaign”. Both segmentations result in different translation and
reordering scores. This kind of ambiguity in the model subsequently results in
the presence of many different equivalent segmentations in the search space.
Also note that the two segmentations represent different information. From the
first segmentation the model learns the dependency between the verb “abstim-
men – vote” and the preposition phrase “gegen ihre kampagne – against your
campaign”. The second segmentation allows the model to capture the reorder-
ing of the complex verb predicate “würden – would” and “abstimmen – vote”
by learning that the verb “abstimmen – vote” is discontinuous with respect to
the auxiliary. This information can not be captured in the first segmentation
because of the phrasal independence assumption and stiff phrasal boundaries.
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The model loses one of the dependencies depending upon which segmentation
it chooses during decoding.
N-gram-based SMT is an instance of a joint model that generates source

and target strings together in bilingual translation units called tuples. Tuples
are essentially phrases but they are atomic units that cannot be decomposed
any further. This condition of atomicity results in a unique segmentation of
the bilingual sentence pair given its alignments. The model does not make
any phrasal independence assumption and generates a tuple by looking at a
context of n previous tuples (or operations). This allows the N-gram model to
model all the dependencies through a single derivation.
The main drawback of N-gram-based SMT is its poor search mechanism

which is inherent from using minimal translation units during search. Decod-
ing with tuples, leads towards a higher number of search errors caused by
lower translation coverage, inaccurate future cost estimation and pruning of
correct hypotheses (See Section 5.3.2 for details). Crego and Mariño (2006)
proposed a way to couple reordering and search through POS-based rewrite
rules. These rules are learned during training when units with crossing align-
ments are unfolded through source linearization to form minimal tuples. For
example, in Figure 5.1, N-gram-based MT will linearize the word sequence
“gegen ihre kampagne abstimmen” to “abstimmen gegen ihre kampagne”, so
that it is in the same order as the English words. Alongside it learns a POS-
rule “IN PRP NN VB→ VB IN PRP NN”. The POS-based rewrite rules serve
to precompute the orderings that are hypothesized during decoding. Coupling
reordering and search allows the N-gram model to arrange hypotheses in 2n

stacks, each containing hypotheses that cover the same foreign words. This
removes the need of future-cost1. Secondly, memorizing POS-based rules en-
ables phrase-based like reordering, however without lexical selection. There
are three drawbacks of this approach. Firstly, lexical generation and reorder-
ing are decoupled. Search is only performed on a small number of reorderings,

1Although using n stacks with future cost estimation is a more efficient solution, it is not
used due to the complexity of accurately computing these estimations Crego et al. (2011).
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pre-calculated using the source side and completely ignoring the target-side.
And lastly, the POS-based rules face data sparsity problems especially in the
case of long distance reorderings.
In the last chapter we addressed these problems by proposing an operation

sequence N-gram model which strongly couples translation and reordering,
hypothesizes all possible reorderings and does not require POS-based rules.
Representing bilingual sentences as a sequence of operations enables us to
memorize phrases and lexical reordering triggers like PBSMT. However, us-
ing minimal units during decoding and searching over all possible reorderings
means that hypotheses can no longer be arranged in 2n stacks. The problem
of inaccurate future cost estimates resurfaces resulting in more search errors.
A higher beam size of 500 is therefore used to produce translation units in
comparison to phrase-based systems. This, however, still does not eliminate
all search errors. In this chapter we show that using phrases instead of cepts
in decoding or using phrasal information in cept-based decoding improves the
search accuracy and translation quality.

5.3 Search

5.3.1 Overview of Decoding Framework

The decoding framework used in the operation sequence model is based on
Pharoah (Koehn, 2004a) which is also used in the state-of-the-art Phrase-based
systems Moses (Koehn et al., 2007) and Phrasal (Cer et al., 2010). The decoder
uses beam search to build up the translation from left to right. For a foreign
sentence of length n, n + 1 stacks2 are initialized. The stacks are arranged in
such a way that stack i maintains hypotheses that have already translated i

many foreign words. The ultimate goal is to find the best scoring hypothesis,
that has translated all the words in the foreign sentence. The overall process

2An additional stack is used to store the start (dummy) hypothesis that has translated no
words.
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can be roughly divided into the following steps: i) extraction of translation
units ii) future cost estimation, iii) hypothesis extension iv) recombination
and pruning.

5.3.2 Drawbacks of Cept-based Decoding

One of the main drawbacks of the operation sequence model is that it has
a more difficult search problem than the phrase-based model. The operation
model, although based on minimal translation units, can learn larger trans-
lation chunks by memorizing a sequence of operations. However, using cepts
during decoding has the following drawbacks: i) the cept-based decoder does
not have access to all the translation units that a phrase-based decoder uses
as part of a larger phrase. ii) it requires a higher beam size to prevent early
pruning of correct hypotheses and iii) it uses worse future-cost estimates than
the phrase-based decoder.
Consider the phrase pair:

The model memorizes it through the sequence:
Generate(Wie, What is) → Gap → Generate (Sie, your) → Jump Back (1)
→ Generate (heissen, name)
For the cept-based decoder to generate the same phrasal translation, it re-

quires three separate tuple translations “Wie – what is”, “Sie – your” and
“heißen – name”. Here we are faced with three challenges.
Translation Coverage: The first problem is that the N-gram model does not
have the same coverage of translation options. The English cepts “what is”,
“your” and “name” are not good candidate translations for the German cepts
“Wie”, “Sie” and “heißen”, respectively. When extracting tuple translations for
these cepts from the Europarl data for our system, the tuple “Wie – what is” is
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ranked 124th, “heißen – name” is ranked 56th, and “Sie – your” is ranked 9th in
the list of n-best translation candidates. Typically only the 20 best translation
options are used and such phrasal units with less frequent cept translations are
never hypothesized in the N-gram-based systems. The phrase-based system on
the other hand can extract the phrase “Wie heißen Sie – what is your name”
even if it is observed only once during training. A similar problem is also
reported in Costa-Jussà et al. (2007). When trying to reproduce the sentences
in the n-best translation output of the Phrase-based system, the N-gram-based
system was able to produce only 37.5 % of sentences in the Spanish-to-English
and English-to-Spanish translation task.
Larger Beam Size: A related problem is that a higher beam size is required

in cept-based decoding to prevent uncommon translations from getting pruned.
The phrase-based system can generate the phrase-pair “Wie heißen Sie – what
is your name” in a single step placing it directly into the stack three words to
the right. The cept-based decoder generates this phrase in three stacks with
the tuple translations “Wie – What is”, “Sie – your” and “heißen – name”. A
very large stack size is required during decoding to prevent the pruning of “Wie
– What is” which is ranked quite low in the stack until the tuple “Sie – your” is
hypothesized in the next stack. Costa-Jussà et al. (2007) reports a significant
drop in the performance of N-gram-based SMT when a beam size of 10 is
used instead of 50 in their experiments. In comparison, the translation quality
achieved by phrase-based SMT remains the same when varying the beam size
between 5 and 50. We used a stack size of 500 in our previous results.
Future Cost Estimation: A third problem is caused by inaccurate future

cost estimation. Using phrases helps phrase-based SMT to better estimate the
future language model cost because of the larger context available, and allows
the decoder to capture local (phrase-internal) reorderings in the future cost. In
comparison the future cost for tuples mostly comprises unigram probabilities.
The future cost estimate for the phrase pair “Wie heißen Sie – What is your
name” is estimated by calculating the cost of each feature. The language model
cost, for example, is estimated in the phrase-based system as follows:
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plm = p(What) * p(is|What) * p(your|What is) ∗ p(name|What is your)

The translation model cost is estimated as:

ptm = p(What is your name|Wie heißen Sie)

Phrase-based SMT is aware during the preprocessing step that the words
“Wie heißen Sie” may be translated as a phrase. This is helpful for estimating
a more accurate future cost because the context is already available. The same
is not true for the operation sequence model, to which only minimal units are
available. The operation model does not have the information that “Wie heißen
Sie” may be translated as a phrase during decoding. The future cost estimate
available to the operation model for the span covering “Wie heißen Sie” will
have unigram probabilities for both the translation and language model.

plm = p(What) * p(is|What) * p(your) * p(name)

The translation model cost is estimated as:

ptm = p(Generate(Wie, What is)) * p(Generate(heißen,name)) * p(Generate(Sie, your))

A more accurate future cost estimate for the translation model cost would
be:

ptm = p(Generate(Wie,What is)) * p(Insert Gap|C)

* p(Generate(Sie,your)|C) * p(Jump Back(1)|C)

p(Generate(heißen,name)|C)

Where C is the context i.e. the m previously generated operations. The
future cost estimates computed in this manner are much more accurate because
not only do they consider context, but also they take the reordering operations
into account. Thus the future cost estimate in the operation model is much
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worse than that of the phrase-based model. The poor future cost estimation
leads to search errors, causing a drop in the translation quality.

5.4 Operation Sequence Model with
Phrase-based Decoding

In the last section we discussed the disadvantages of using cepts during search
in a left-to-right decoding framework. We now define a method to empirically
study the mentioned drawbacks and whether using information available in
phrases during decoding, can help improve search and translation quality.

5.4.1 Training

We extend the training steps (used in the last chapter) to extract a phrase lex-
icon from the parallel data. We extract all phrase pairs of length 6 and below,
that are consistent (Och et al., 1999)3 with the word alignments. Only contin-
uous phrases as used in a traditional phrase-based system are extracted. The
future cost of each feature component used in the log-linear model is calcu-
lated. The operation sequence required to hypothesize each phrase is generated
and its future-cost is calculated. Future cost of other features such as language
models, lexicalized probability features etc. are estimated. The estimates of
the count-based reordering penalties (gap penalty and open gap penalty) and
the distance-based features (gap-width and reordering distance) could not be
estimated previously with cepts but are available when using phrases.

5.4.2 Decoding

We extended the cept-based OSM decoder and tried three ideas. Firstly we
enabled the decoder to use phrases instead of cepts. This allows the decoder

3A phrase is said to be consistent with alignments, if all words in the phrase are aligned
to each other and not to the words outside of the phrase (Och et al., 1999).
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to i) use context when computing the future cost estimates ii) cover multiple
source words in a single step subsequently improving translation coverage and
search. Note that using phrases instead of cepts during decoding, does not
reintroduce the spurious phrasal segmentation problem of the phrase-based
system, because the model is built on minimal units which avoids segmentation
ambiguity. Different compositions of the same phrasal unit lead to exactly the
same model score. We can therefore block any alternative compositions of a
phrasal unit during decoding. This option is not available in the phrase-based
decoding, because an alternative composition may lead towards a better model
score.
In our secondary set of experiments, we persisted with using cepts-based de-

coding but modified the decoder to use information available from the phrases
extracted for the test sentences. Firstly, we used future cost estimates from the
extracted phrases (cept.500.fc, Table5.1). This however, leads to inconsistency
in the cases where the future cost is estimated from some phrasal unit that can
not be generated through the available cept translations. For example, say the
best cost to cover the sequence “Wie heißen Sie” is given by the phrase “What
is your name”. The 20-best translation options in the cept-based system, how-
ever, do not have tuples “Wie – What” and “heißen – name”. To remove this
discrepancy, we add all such tuples that are used in the extracted phrases, to
the list of extracted cepts (cept.500.fc.t). We also studied how much gain we
obtain by only adding tuples from phrases and using cept-based future cost
estimates (cept.500.t).

5.4.3 Evaluation Method

To evaluate our modifications we apply a simple strategy. We hold the model
constant and change the search to use phrase-based decoding (phrase.*), the
baseline cept-decoder(cept.500) and the modified cepts-based decoders (cept.500.*)
loaded with the phrasal information as described above. The model parameters
are obtained by running MERT (minimum error rate training) for the base-
line decoder on dev. Then we run the cept-based baseline decoder (cept.500)
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and modified decoders (cept.500.* and phrase.*) on the dev-test using the
optimized weights. Once we have the output from running each of these de-
coders, we can compute the search accuracies and translation quality. Note
that because all the decoding runs use the same feature vector, the model
stays constant, only search changes.
The search accuracy is computed by comparing translation hypotheses from

the different decoding runs. We form a collection of the best scoring hypotheses
by traversing through all the runs and selecting the sentences with highest
model score. The best scoring hypothesis can be contributed from more than
one runs but is counted only once when forming the list of best hypotheses. We
then compute the accuracy of each run. The search accuracy of a decoding run
is defined as the percentage of hypotheses that were contributed from this run,
when forming a list of best scoring hypotheses. Translation quality is measured
through BLEU (Papineni et al., 2002).
Using phrases in search reduces the decoding speed. In order to make a

fair comparison, both the phrase-based and the baseline cept-based decoders
should be allowed to run for the same amount of time. We therefore reduced
the stack size in the phrase-based decoder so that it runs in the same amount
of time as the cept-based decoder. We found that using a stack size of 200 for
the phrase-based decoder was comparable in speed to using a stack-size of 500
in the cept-based decoding.

5.5 Experimental Setup
We initially experimented with two language pairs: German-to-English (G-E)
and French-to-English (F-E). We trained our system and the baseline systems
on the data made available for the translation task of the Fourth Workshop
on Statistical Machine Translation.4 We used 1M bilingual sentences, for the
estimation of the translation model and 2M sentences from the monolingual

4http://www.statmt.org/wmt09/translation-task.html
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corpus (news commentary) which also contains the English part of the bilin-
gual corpus. Word alignments are obtained by running GIZA++ (Och and
Ney, 2003) with the grow-diag-final-and (Koehn et al., 2005b) symmetrization
heuristic. We follow the training steps described in the last chapter, consisting
of i) post-processing the alignments to remove discontinuous and unaligned
target cepts, ii) conversion of bilingual alignments into operation sequences,
iii) estimation of the n-gram language models.

5.5.1 Results on Search Accuracies

We divided our evaluation into two halves. In the first half we carried out
experiments to measure search accuracy and translation quality of the mod-
ified decoders against the baseline cept-based OSM. We used the version of
the OSM decoder that does not allow discontinuous5 source cepts. To increase
the speed of the system we used a hard reordering limit of 156, in the base-
line decoder (cept.500) and the modified decoders, disallowing jumps that are
beyond 15 words from the first open gap. For each extracted cept or phrase
10-best translation options are extracted.
We first tuned the baseline on dev7 to obtain an optimized weight vector.

We then ran the baseline and our decoders as discussed in Section 5.4.2 on the
dev-test. Then we repeated this experiment by tuning the weights with our
phrase-based decoder (using a stack size of 100) and ran all the decoders again
using the new weights.
Table 5.1 shows the average search accuracies and BLEU scores of the two

experiments. Using phrases during decoding in G-E experiments resulted in

5Discontinuous source-side units did not lead to any improvements (See results of using
discontinuous cepts in Section 4.7.2) and increased the decoding times by multiple folds.

6Imposing a hard reordering limit significantly reduced the decoding time and did not
decrease the BLEU scores.

7We used news-dev2009a as dev and news-dev2009b as dev-test and tuned the weights with
Z-MERT (Zaidan, 2009).
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System German French
Accuracy BLEU Accuracy BLEU

Baseline System cept.stack-size
cept.50 25.95% 19.50 42.10% 21.44
cept.100 30.04% 19.79 47.32% 21.70
cept.200 35.17% 19.98 51.47% 21.82
cept.500 41.56% 20.14 54.93% 21.87

Our Cept-based Decoders
cept.500.fc 48.44% 20.52 54.73% 21.86
cept.500.t 52.24% 20.34 67.95% 22.00

cept.500.fc.t 61.81% 20.53 67.76% 21.96
Our Phrase-based Decoders

phrase.50 58.88% 20.58 80.83% 22.04
phrase.100 69.85% 20.73 88.34% 22.13
phrase.200 79.71% 20.83 92.93% 22.17

Table 5.1: Search Accuracies and BLEU scores of the Baseline and Our De-
coders with different Stack Sizes – fc = Future Cost Estimated from
Phrases, t = Cept Translation Options enriched from Phrases

a statistically significant8 0.69 BLEU points gain comparing our best system
phrase.200 with the baseline system cept.500. We mark a result as significant
if the improvement shown by our decoder over the baseline decoder (cept.500)
is significant at the p ≤ 0.05 level, in both the runs. All statistically significant
improvements in Table 5.1 are bold-faced.
The relative search accuracy of our best system (phrase.200) is roughly 80%

which means that 80% of the times, the phrase-based decoder (using stack
size 200) was able to produce the same or better model scores than the cept-
based decoders (using a stack size of 500). Our F-E experiments also showed
improvements in BLEU and model scores. The relative search accuracy of our
best system phrase.200 is roughly 93% as compared with 55% in the baseline

8We use bootstrap resampling (Koehn, 2004b) to test our results against the baseline
results.
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decoder (cept.500) giving a BLEU point gain of +0.30 over the baseline.
Our modifications to the cept-based decoder also showed improvements. We

found that extending the cept translation table (cept.500.t) using phrases helps
both in G-E and F-E experiments by extending the list of n-best translation
options by 18% and 18.30% respectively.
Using future costs estimated from phrases (cept.500.fc) improved both search

accuracy and BLEU scores in G-E experiments, but does not lead to any
improvements in the F-E experiments, as both BLEU and model scores drop
slightly. We looked at a few examples where the model score dropped and found
that in these cases, the best scoring hypotheses are ranked very low earlier in
the decoding and make their way to the top gradually in subsequent steps.
A slight difference in future cost estimate prunes these hypotheses in one or
the other decoder. We found future cost to be more critical in G-E than F-E
experiments. This can be explained by the fact that more reordering is required
in German and it is necessary to account for the reordering operations and
jump-based features (gap-based penalties, reordering distance and gap-width)
in the future-cost estimation. French on the other hand is largely monotonic
except for a few short distance reorderings such as flipping noun and adjective.

5.5.2 Comparison with other Baseline Systems

In the second half of our evaluation we compared our best system phrase.200
with the baseline cept-decoder (cept.500), and other state-of-the-art Phrase-
based and N-gram-based systems on German-to-English, French-to-English
and Spanish-to-English tasks. We used the official evaluation data (news-test
sets) from the Statistical Machine Translation Workshops 2009-2011 for all
three language pairs (German, Spanish and French). All the systems are tuned
using the dev set news-dev2009a. The optimized vector is used to decode the
test-sets.
Baseline Systems:We also compared our system with i) Moses (Koehn et al.,
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2007), ii) Phrasal 9 (Cer et al., 2010), and iii) Ncode (Crego et al., 2011). We
used all the toolkits with their default settings.
We used the default stack sizes of 100 for Moses10, 200 for Phrasal, 25 for

Ncode (with 2n stacks). A 5-gram English language model is used. Both phrase-
based systems use 20-best phrases for translation, Ncode uses 25-best tuple
translations. A hard distortion limit11 of 6 is used in the default configuration
of both Phrase-based systems. Amongst the other defaults we retained the hard
source gap penalty of 15 and a target gap penalty of 7 in Phrasal. We provide
Moses and Ncode with the same post-edited alignments12 from which we re-
moved target-side discontinuities. We feed the original alignments to Phrasal
because of its ability to learn discontinuous source and target phrases. All the
systems use MERT for the optimization of the weight vector.
Table 5.2 compares the performance of our phrase-based decoder against the

baselines. Our system shows an improvement over all the baseline systems for
the G-E pair, in 11 out of 12 cases in the F-E pair and in 8 out of 12 cases
in the S-E language pair. We mark a baseline with “*” to indicate that our
decoder shows an improvement over this baseline result which is significant at
the p ≤ 0.05 level.

5.6 Chapter Summary
In this chapter we proposed a combination of using an operation sequence
model based on minimal units and decoding with phrases. Modeling with min-
imal units enables us to learn local and non-local dependencies in a unified
manner and avoid spurious segmentation ambiguities. However, using mini-

9Phrasal provides two extensions to Moses: i) Hierarchical reordering model (Galley and
Manning, 2008) and ii) Discontinuous phrases (Galley and Manning, 2010).

10Using stacks sizes from 200− 1000 did not improve results.
11We tried to increase the distortion limit in the baseline systems to 15 (in G-E experiments)

as used in our systems but the results dropped significantly in case of Moses and slightly
for Phrasal so we used the default limits for both decoders.

12Using post-processed alignments gives better results than the original alignments for these
baseline systems.
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Ms Pd Nc C500 P200
German-to-English

MT09 18.73* 19.00* 18.37* 19.06* 19.66
MT10 18.58* 18.96* 18.64* 19.12* 19.70
MT11 17.38* 17.58* 17.49* 17.87* 18.19

French-to-English
MT09 24.61* 24.73* 24.28* 24.94* 25.27
MT10 23.69* 23.09* 23.96 23.90* 24.25
MT11 25.17* 25.55* 24.92* 25.40* 25.92

Spanish-to-English
MT09 24.38* 24.63 24.72 24.48* 24.72
MT10 25.55* 25.66* 25.87 25.68* 26.10
MT11 25.72* 26.17* 26.36* 26.48 26.67

Table 5.2: Comparison on 3-Test Sets – Ms = Moses , Pd = Phrasal (Discon-
tinuous Phrases), Nc =Ncode, C500 = Cept.500, P200 = Phrase.200

mal units also in the search presents a significant challenge because of the
poor translation coverage, inaccurate future cost estimates and the pruning
of the correct hypotheses. Phrase-based SMT on the other hand overcomes
these drawbacks by using larger translation chunks during search. However, the
drawback of the phrase-based model is the phrasal independence assumption,
spurious ambiguity in segmentation and a weak mechanism to handle non-local
reorderings. We showed that combining a model based on minimal units, with
phrase-based decoding can improve both search accuracy and translation qual-
ity and that the phrasal information can be indirectly used in the cept-based
decoding to improve the results. We addressed the drawbacks in cept-based
decoding by making use of the information available in phrases. We showed
that future-cost estimated from phrases is helpful in the search when translat-
ing from German-to-English. We extended the translation tables for the cept-
based decoder using the cepts available in the extracted phrases and showed
improvements in search and translation accuracies. Finally we showed that
hypothesizing phrases still leads to a better search and translation scores than
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obtained by enriching cept-based decoding from phrases, even using a smaller
beam-size of 100. We tested our system against the state-of-the-art phrase-
based and N-gram-based systems, for German-to-English, French-to-English
and Spanish-to-English for three standard test-sets. Our system showed sta-
tistically significant improvements over all the baseline systems in most of the
cases. The contents related to this chapter were presented at NAACL 2013 in
Durrani et al. (2013a) and ACL 2013 Durrani et al. (2013b).
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In this chapter we present the contributions of the thesis. We revisit the pros
and cons of the phrase-based and N-gram-based system discussing how our
model is able to overcome the drawbacks of the previous models. At the end
we present a section on shortcomings and future work.

6.1 Contributions of this Work
In this section we will list the contributions of this work, making a comparison
with the phrase-based (Moses) and N-gram (Ncode) models.

6.1.1 Comparison with the Phrase-based System

First we will compare our system with the phrase-based. Let us begin by
reiterating the drawbacks of the phrase-based model (See sections 2.3 for the
details).

1. Dependencies across phrases are not directly represented in the transla-
tion model

2. Discontinuous phrases cannot be represented and used

3. Phrasal independence assumption is made

4. The reordering model is not designed to handle long range reorderings

5. A hard reordering limit is applied during decoding
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6. The presence of many different equivalent segmentations increases the
search space

7. Source word deletion and target word insertion outside phrases is not
allowed during decoding

Modeling of Non-Local Dependencies

Problem: Traditional phrase-based SMTmodels dependencies between words
and their translations inside of a phrase well. However, dependencies across
phrase boundaries are largely ignored. Recall the example shown in Figure 6.1.
The reordering of the verb “abstimmen – vote” is internal to the phrase and
therefore handled conveniently. However, the phrase-based system fails while
translating the sentence “die menschen würden gegen meine außenpolitik ab-
stimmen”. The phrase “gegen meine außenpolitik abstimmen – vote against
my foreign policy” may not be available due to data sparsity. In this case, the
phrase-based model is forced to fall back to word-based translation. The sen-
tence will therefore be translated as “people would against my foreign policy
vote” unless the language model provides strong enough evidence for a different
ordering.

Figure 6.1: Handling of Local Dependencies – Dotted lines =Word Alignments

Contribution of this Work: The generation of this sentence in our model
starts with generating “sie – they”, “würden – would”. Then a gap is inserted
on the German side, followed by the generation of “abstimmen – vote”. At this
point, the (partial) German and English sentences look as follows:
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sie würden abstimmen

they would vote

We jump back to the gap on the German side and fill it by generating “gegen
– against”, “ihre – your” “kampagne – campaign”, for the first example and
generating “gegen – against”, “meine – my”, “außenpolitik – foreign policy” for
the second example, thus handling both short and long distance reordering in a
unified manner. Learning the pattern “würden abstimmen – would vote”
helps us to generalize to the second example with unseen context, without
relying on the monolingual language model.

Modeling of Gappy Units

Problem: A traditional phrase-based system can only use continuous phrases.
If a discontinuous cept appears within a phrase, it can be learned and repro-
duced during decoding. However, such dependencies can not be handled across
phrases. Recall the example shown in Figure 6.2. The phrase-based system fails
to reproduce the translation unit “hat gelesen – read” (Figure 6.2(b)) although
it has observed it during training (Figure 6.2(a)).

Figure 6.2: Handling of Gaps – Dotted lines = Word Alignments – (a) Learned
Phrase (b) Unseen Context

Contribution of this Work: Our model can also use tuples with source-
side discontinuities. The above sentence would be generated by the following
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sequence of operations: (i) Generate(dann, then) (ii) Insert Gap (iii) Gen-
erate(er, he) (iv) Jump Back(1) (v) Generate(hat gelesen, read) (only
“hat” and “read” are added to the sentences yet) (vi) Jump Forward (to the
right-most source word so far generated) (vii) Insert Gap (viii) Continue
Source Cept (“gelesen” is inserted now) (ix) Jump Back(1) (x) Gener-
ate(ein, a) (xi) Generate(buch, book).

Figure 6.3: Learned Pattern

From this operation sequence, the model learns a pattern (Figure 6.3) which
allows it to generalize to the example in Figure 6.2(b). The open gap repre-
sented by serves a similar purpose as the non-terminal categories in a
hierarchical phrase-based system such as Hiero and Phrasal (discontinuous
PBSMT). Thus it generalizes to translate “ein märchenbuch gelesen” in ex-
actly the same way as “ein buch”.

Phrasal Independence Assumption

Problem: Phrase-based SMTmakes an independence assumption during trans-
lation. Each phrase is translated independently of others. Assume that the
phrases “er hat – he has” and “hat gegessen – has eaten” appear in the bilingual
corpus. The translation of a German sentence “er hat gegessen – he has eaten”
is carried out through the phrase sequence “er hat – he has” and “gegessen –
eaten” or through the phrase sequence “er – he” and “hat gegessen – has eaten”.
In the former case the dependency of “gegessen – eaten” upon “hat – has” is not
captured. In the latter case, the dependency that models subject verb relation
is not captured. This problem also occurs in the discontinuous phrase-based
SMT. Consider translating the sentence “er hat eine Pizza gegessen – he has
eaten a pizza”. The translation could be done through two phrases “er hat X
gegessen – he has eaten” and “eine Pizza – a pizza”. The dependency between
the verb “gegessen – eaten” and the object “eine Pizza – a pizza” can not
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be captured. This problem is somewhat reduced with the help of the language
model but the model is only limited to what can be captured by the target-side
LM.

Contribution of this Work: Our model like the N-gram model does not make
any context independence assumptions other than the language model order.
The model represents source and target words in operations:

Phrase 1 (Learned Bigram): Generate(er, he) Generate(hat, has)
Phrase 2 (Learned Bigram): Generate(hat, has) Generate(gegessen, eaten)

During the decoding our model is able to capture both the dependencies,
because our model can retrieve the bigram probabilities from the learned n-
gram model.

Weak Reordering Model

Problem: The lexicalized reordering models used by the phrase-based system
remain weak at modeling the long distance jumps and heavily rely on the
language model to select the right word order. The model only learns how a
phrase is reordered according to the last word of the previous phrase (Koehn
et al., 2005a) or the block of phrases (Galley and Manning, 2008). Recall
the discussion and an example from Section 2.3.3 (Page 73). The orientation
models learned from the following example are “sie würden – they would”
(m,d)1 and “abstimmen – against(d,d)”.

sie würden gegen ihre kampagne abstimmen

they would vote against your campaign

With the help of the learned orientations we can not distinguish the bad
hypotheses from the good hypotheses shown in Table 2.8 (Page 76), when
translating the German sentence given below.

1Orientations m = monotonic, s = swap, d = discontinuous
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sie würden für die Legalisierung der Abtreibung in Kanada abstimmen
they would for the legalization of abortion in Canada vote

The monolingual language model is required to break the tie. See Section
4.7.2 for comparison of our model with the phrase-based models without the
language model feature. For longer sentences however, the monolingual lan-
guage model is no longer able to compensate the dis-preference of the trans-
lation model for long distance reordering. The further to the right the word
“abstimmen” is in the sentence the more difficult it is for the lexicalized re-
ordering model to move it to the right position.

Contribution of this Work: The drawback of the lexicalized reordering model
is that it does not model the connection between the words “würden – would”
and “abstimmen – vote”. Our model on the other hand learns this relationship
through the operation sequence:

sie würden abstimmen

they would vote

Generate(sie, they) Generate(würden, would) Insert Gap Generate(abstimmen, vote)

The reordering of “abstimmen – vote” is necessary to move the second part
of the German complex verb to its correct position therefore gap insertion is a
probable operation after the generation of “würden – would”. Having observed
the above pattern in the training, the hypothesis that translates “sie wür-
den...abstimmen” to “they would vote” would be more probable according to
the operation model than any other hypothesis shown in Table 2.8 (Page 76).
Our model takes more information into account than the lexicalized reordering
model. The operation model strongly couples translation and reordering oper-
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ations such that reordering operations are directly influenced by the preceding
translation and reordering operations and vice versa.

Hard Reordering Limit

Problem: Phrase-based systems apply a hard reordering limit, allowing only
a jump of 6 words. Using a higher distortion limit not only increases the decod-
ing time but also increases the search errors resulting in a drop of translation
accuracy.

Contribution of this Work: We do not apply any hard reordering limit dur-
ing search. Our model with the help of reordering distance and gap distance
penalties is able differentiate the good hypotheses and filter out the bad ones.
Using no reordering limit does not cause a decrease in translation accuracy in
our system. On the contrary we observe slight gains in the German-to-English
translation task which requires long distance jumps. See Section 4.7.2 for the
translation accuracy of the phrase-based system without distortion limit in
comparison to our system and for the discussion of results.

Spurious Phrasal Segmentation

Problem: Phrase-based model is unaware of the actual phrasal segmentation
of a sentence during training. It therefore learns all possible ways of segmenting
a bilingual sentence. Different segmentations of a bilingual sentence result in
different probability scores for the translation and reordering models, causing
spurious ambiguity in the model. Different compositions of the same phrasal
units are subsequently hypothesized and compete during decoding.

Contribution of this Work: Our model, like the N-gram model, uses minimal
translation units. Tuples, unlike phrases, do not overlap. Each bilingual sen-
tence, pair given the alignment, has exactly one possible operation sequence,
thus a single derivation is learned by the model.
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Source Word Deletion

Problem: Phrase-based systems handle deletion and insertion of words inside
of phrases but do not allow these operations outside of phrases. See Section
2.3.6 (Page 79) for the details.

Contribution of this Work: Our model like the N-gram model provides tuple
translations such as “ja – null”2 where the source word “ja” gets deleted during
decoding. This is done through the “Generate Source Only(X)” operation.
The decoder can hypothesize a translation “Generate Source Only (ja)” when
translating the German sentence “das Haus ist ja klein – the house is small3”.
The phrase-based model however has an advantage over our model. Although

our generative story provides a “Generate Target Only(Y)” operation which
can be useful for inserting target words during decoding, this operation is
not supported by the decoder. On the other hand the phrase-based system
can hypothesize phrases with target word insertions. Our system must use an
attachment heuristic to achieve this effect. See Section 4.4 for details.

6.1.2 Comparison with the N-gram Model

In this section we will briefly go through the drawbacks of the N-gram-based
SMT, making a comparison with our model. Below we enumerate the draw-
backs of the N-gram model. The first three are related to the reordering frame-
work used in the N-gram model. In this section we will discuss them in detail.
Our model shares the last two drawbacks of the N-gram-based SMT so these
are not discussed here. Refer to Section 3.5.4 for details.

1. Only the pre-calculated orderings are hypothesized during decoding.

2. The N-gram model can not use lexical triggers.

2“ja” is sometimes used for emphasis, and does not need to be translated in those cases.
3This example has been borrowed from Koehn (2010).
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3. Long distance reorderings can not be performed.

4. Using tuples presents a more difficult search problem than that in phrase-
based SMT.

5. Unaligned target words can not be handled without an attachment heuris-
tic.

6. Target-side discontinuities are not represented

Pre-calculated Reorderings

The reordering framework of the N-gram model is triggered by source lin-
earization and rewrite rules. The search graph used by the decoder is not built
dynamically but based on the POS-based rewrite rules learned during training.
The search is therefore performed only on the orderings pre-calculated on the
source side independently of the target side. Often, the evidence for the correct
ordering is provided by the target-side language model (LM). In the N-gram
approach, the LM only plays a role in selecting between the pre-calculated
orderings.

Inability to use Lexical Triggers

A related problem of the N-gram model is its inability to use lexical triggers.
To hypothesize a reordering a rule must trigger. There can be a scenario where
the linearized bilingual language model has the evidence of the reordering but
there is no rewrite rule to hypothesize that reordering. Assume the training
sentence:

Ich (I) habe (have) mit (with) ihm (him) gesprochen (talked)

I have talked to him

The linearization process changes the German word order to “Ich habe
gesprochen mit ihm” and learns the reordering rule, IN PRP VBN→ 2 0 1. Now
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consider a test sentence “Ich habe mit allen meinen freunden gesprochen”. The
reordering of “gesprochen – talked” can only be hypothesized if a reordering
rule “IN DT PRP NNS VBN → 4 0 1 2 3” exists in the rule inventory. Al-
though the bilingual corpus learns a tuple tri-gram “<Ich – I> <habe – have>
<gesprochen – talked>” from the training example, the decoder does not hy-
pothesize it for the test sentence because the rule is unavailable. Although the
N-gram model uses POS tags, data sparsity still limits the usability of the
rules.

Contribution of this Work: In comparison to the N-gram-based model, our
model performs search on all possible reorderings. Our model has the ability
to learn lexical triggers and apply them to the unseen contexts. For the above
sentence the model learns a lexical trigger:

Ich habe gesprochen

I have talked

The model can jump back to the open gap and insert “mit ihm – to him”
for the first example and “mit allen meinen freunden – with all my friends” in
the test sentence. The inserted gap acts as a place holder for any number of
words giving a greater flexibility to our model. The POS-based rewrite rules
require exactly the same sequence of POS tags to appear in the training data.

Long Distance Reordering

The N-gram-based system uses a rule length of 6 or less POS tags. This pre-
vents the N-gram model from hypothesizing long range reorderings which re-
quire larger jumps. Consider translating the German sentence shown in Figure
6.4. To move the German clause-final verb “stimmen – vote” to its correct po-
sition behind the auxiliary “would”, it needs to jump over 15 German words.
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Figure 6.4: Long Distance Reordering

Contribution of this Work: Our model does not apply any hard reordering
constraint. We consider all possible reorderings comprising both long and short
jumps. With the help of distance-based penalties our model is able to penalize
the bad long distance reorderings.

Combining N-gram Modeling with Phrase-based Search

Problem: Using minimal units, presents a much more difficult search problem
in terms of i) poor selection of translation options, ii) inaccurate future cost
estimates and iii) pruning of correct hypothesis. See Sections 3.5.3, and 4.5
and Chapter 5 for details. A higher stack size is required to overcome this
disadvantage. This, however, still does not eliminate all search errors.

Contribution of this Work: In this dissertation, we combined N-gram-based
modeling with phrase-based decoding, and showed that a combination of mod-
eling with minimal translation units and decoding with phrases completely
captures the benefits of both approaches. Using phrases during decoding over-
comes the problem by providing i) better selection of translation options, ii)
more accurate future cost estimation and iii) improving the search performance
by preventing the correct hypotheses from getting pruned. We observed sta-
tistically significant gains by modifying the search to use phrases instead of
cepts.
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Future Work: A future work would study whether a phrase-based system
like Moses or Phrasal can profit from an OSM- or Ngram-style feature. Feng
et al. (2010) previously showed that adding a linearized source-side language
model in a phrase-based system helped. It would also be interesting to study
whether this insights of using minimal units and phrase-based search would
hold for hierarchical MT. Vaswani et al. (2011) recently showed that using a
rule Markov model of the derivation history can be used to obtain the same
translation quality as that of using grammars formed with composed rules.

6.2 Shortcomings and Future Work

6.2.1 Removing Target-Side Discontinuities

One of the drawbacks of our generative story is its inability to model discontin-
uous target-side cepts. Although our model can handle discontinuous source-
side cepts such as “habe...gemacht – made” by inserting gaps and through
“Continue Source Cept” operation, the same can not be done on the target-
side. The reason for this discrepancy is the assumption that English will be
generated from left-to-right in continuous fashion. Our model can not represent
alignment such as the one shown in Figure 4.15.

Figure 6.5: Target Side Discontinuities

Both continuous phrase-based and N-gram-based SMT shares this problem
with our model. However, a phrase-based system can learn small phrases, such
as “Drink hinunterschüttete – poured the drink down”, without applying the
attachment heuristic.
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In Section 4.4, we proposed a heuristic-based solution to this problem. We
apply a post-processing that edits such alignments to make them consistent
with our model. For example in this case we delete the alignment link “hinun-
terschüttete – down” and only retain “hinunterschüttete – poured”. However,
a more elegant solution that modifies the generative story to represent target-
side gaps is desirable.

Future Work

Idea-1: One possible solution to handle target-side discontinuities is to intro-
duce an operation like Generate(hinunterschüttete, poured [down]), that will
immediately generate “hinunterschüttete – poured” and place “down” on the
queue. A follow up operation “Continue Target Cept” will dequeue “down”
from the queue. This mechanism of handling discontinuous target-side gaps is
used in Galley and Manning (2010). A potential drawback of this approach
is that the conditioning of “Continue Target Cept” on its matching operation
Generate(hinunterschüttete, poured [down]) is weak, in the case where the dis-
tance between “poured” and “down” is more than 2 or 3 words, due to data
sparsity.

Using Split Rules: A possible future work is to go along the lines of Crego
and Yvon (2009) and to use split tokens on the target-side. We will therefore
split a source-side cept X aligned with a discontinuous target-side cept into
X1 and X2, each aligning to one of the components of the discontinuous target
cept. Figure 6.5 can therefore be transformed into Figure 6.6. A split rule such
as “hinunterschüttete → hinunterschüttete1 hinunterschüttete2 can be used
during decoding.

Introducing Gaps on Target-Side: A more elegant solution would be to
enable the generative story to handle this by removing the assumption of left-
to-right generation and by introducing gaps and jumps on target-sides. This
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Figure 6.6: Target Side Discontinuities – Split Rules

may however, overly complicate the generative story and will require parsing-
based decoding.

6.2.2 Unaligned Target-Side Words

Another drawback in our work is that our system can not handle unaligned
target words. Although our generative story can model unaligned target-side
words through the “Generate Target Only (Y)” operation, the problem of how
to hypothesize these words during decoding without increasing decoding com-
plexity is a non-trivial problem. Both phrase-based and N-gram-based SMT
share this problem with our model. However, phrase-based SMT can learn in-
sertions of unaligned words inside of phrases. During decoding if such a word
appears in the same left or right context as observed during training, the
phrase-based SMT can successfully hypothesize such units.

Future Work

Using Context for Clues: The idea is to enable “Generate Target Only (Y)”
operation in the operation sequence model and use phrasal clues during de-
coding to hypothesize candidates of insertions. Currently when we see a case
such as:

< A− a >< NULL− b >< C − c >
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we try to attach “b” to right or left tuple to form a new tuple < A − ab >
or < C − bc > and learn an operation sequence such as “Generate(A,ab)” or
“Generate(C,bc)”. Instead of doing this we now learn two phrases from this
example < A−ab > and < C− bc > while maintaining this information that b
is unaligned in these phrases. During decoding when A or C appears we build
two hypotheses, one generating < A− a > with a “Generate (A,a)” operation
and second generating < A − ab > with the operations “Generate (A,a) –
Generate Target Only (b)”. This is equivalent to hypothesizing phrases “A –
a” and “A – ab” in the phrase-based system. This method will work as long
as A or C appear in the source sentence. A more sophisticated mechanism is
required to insert target-side words with no contextual clues. It is arguable
whether spuriously inserting target-side words with no contextual evidence
may be a useful thing. A solution to address this problem was published later
at ACL 13. Please refer to Durrani et al. (2013b).

6.2.3 Removing Deficiency and Derivational Ambiguities

The model in its current form has two problems i) it is deficient and ii) it has
derivational ambiguity. In this section we will briefly highlight these problems
and abstractly discuss how these can be addressed.

Deficiency: One problem with the operation sequence model is that it assigns
probability mass to some operation sequences that can not occur in practice.
Following are some events where the model shows deficiency:

• The model can jump back with a non-zero probability even when there
are no open gaps. Similarly model will assign probabilities to Jump
Back(2) or Jump Back(3) although there is only one open gap.

• The model also assigns a probability mass to any “Continue Source Cept”
operation that does not follow “Generate (X,Y)” operation with a multi-
word source cept.
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A reverse of this problem is caused due not having an explicit “Stop” oper-
ation when the generation ends. This leads to the probability of all operation
sequences summing up to more than 1.

Derivational Ambiguity: A related problem is that several operation se-
quences can generate the same aligned sentence pair which results in a deriva-
tional ambiguity. The corpus conversion algorithm mentioned in Section 4.2.6
(Page 143) converts each bilingual sentence pair, given its alignment into a
unique operation sequence. However, there is a many-to-one relationship on
the reverse side i.e. more than one sequence of operations can be mapped to
the same bilingual sentence pair. Secondly not every operation sequence can
be mapped to a sentence pair. For example “wie heißt du - what is your name”
can be generated with the operation sequence:
Generate(wie, what is)→ Insert Gap→ Generate (du, your)→ Jump Back

(1) → Generate (heißt, name)
but also with the following operation sequence:
Insert Gap → Jump Back (1) → Generate(wie, what is) → Insert Gap →

Generate (du, your) → Jump Back (1) → Insert Gap → Jump Forward →
Jump Back (1) → Generate (heißt, name)
Clearly the second operation sequence has an additional number of unnec-

essary jumps but the model currently does not have parameters to forbid such
sequences.
Another example of such spurious generation can occur due to null-aligned

words. Consider the example “kommen Sie mit – come with me” where “Sie”
aligns with nothing. This example can be generated with the following opera-
tion sequence:
Generate (kommen, come)→ Generate Source Only (Sie)→ Generate (mit,

with me)
but also with the following operation sequence:
Generate (kommen, come) → Insert Gap → Generate (mit, with me) →

Jump Back (1) → Generate Source Only (Sie)
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The model does not explicitly represent the information of when the null-
aligned source word “Sie” has to be generated. Going in the other direction
from alignments to operation sequence this restriction is encoded in the conver-
sion algorithm which allows generation of “Sie” immediately after its previous
German word is generated. There is a need for the elimination of many-to-one
mappings from operation sequence to aligned sentence pairs.

Future Work

In order to remove the problem of deficiency and spurious derivational ambi-
guity, new parameters should be added to the model. These parameters would
keep track of any open gaps. A “Stop” operation is required which would be
disallowed if any “Continue Source Cept” operation is pending or if there are
any open gaps that are required to be filled.
A future work will address the following open questions:

• What is the minimal set of restrictions required to eliminate inconsistent
and non-canonical operation sequence?

• How does the operation sequence model need to be enriched (with addi-
tional context information) in order to be able to enforce these restric-
tions?

While having a model free from the problems mentioned in this section
is desirable in theory, it is less likely to cause any improvements in machine
translation quality. An argument that can be used to support this notion would
be the transition from IBMModel 4 to Model 5 (mentioned in Chapter 2, Pages
34 and 36). Model 4 is much more deficient than our model but Och (2002)
has shown that Model 5, which solves the problem of deficiency in Model 4,
does not improve the word-alignment or translation accuracies.
Secondly our model has a much richer conditioning than Model 5. In order

to memorize lexical and reordering triggers, we have to remember previous
n − 1 operations. Adding other parameters to the generative story will raise
sparsity concerns.
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6.2.4 Reordering Constraints

In this work, we used beam-search decoding with histogram pruning to con-
strain the search space. While it is a commonly used decoding mechanism to
restrict the exponentially growing hypotheses, it is worth while trying other
mechanisms to restrict the search space.

Future Work

A future work can be to study the impact of applying restrictions such as ITG
(inversion transduction grammars) constraints (Wu, 1997) or IBM constraints
(Berger et al., 1996) to our model. The ITG grammars generate the input
sentence as a sequence of blocks that can be merged monotonically or with
a swap. IBM constraints, restrict the reordering to only one of the next k
uncovered positions. These reordering restrictions can be applied by putting
constraints on Jump Forward and Jump Back (N) operations in the model.
The number of reorderings can also be controlled by putting hard limits on
the total number of gaps and open gaps at a time.

6.2.5 Using POS-based and Lemma-based Operation
Sequence Model

The inclusion of linguistic information such as morphology and syntax inside
of machine translation has been shown to be useful. A tight integration of these
into SMT has several benefits (i) Using POS-tags and lemmas are helpful to
overcome data sparsity. (ii) Many phenomena in language translation can be
best explained with morphological and syntactic evidence (Koehn and Hoang,
2007).
In this section we discuss some ideas about how to further improve the

operation sequence model. One first step could be a POS-based extension of
the model which allows the system to condition the probability of the next
operation either on the sequence of preceding operations (as before), or on
a generalized sequence of operations with words replaced by POS tags. The
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generalization of the operation sequence allows the system to consider a wider
syntactic context where this is appropriate. A further extension would be to
enable factored-based machine translation with our model. Below we sketch a
possible road map for these ideas.
The lexical trigger learned from the bilingual sentence “er hat eine Pizza

gegessen – he has eaten a pizza” is “hat gegessen – has eaten”. This pattern
fails to apply on the test sentence “Wir haben eine Pizza fabriziert”. However,
learning a reordering pattern such as “AUX VBN” based on POS-tags can
generalize to the test sentence “Wir haben eine Pizza fabriziert”. A lexically
driven operation is conditioned on the k preceding operations with word pairs.
The POS driven operation will be conditioned on k preceding operations with
POS-tags. The n-gram language model for the POS-driven operations allows
the generator to look further back, which will improve reordering.
The model estimated from the operation sequence of POS-pairs can be used

as a feature in the discriminative framework. Alternatively it can be interpo-
lated with the operation sequence model of lexical forms during decoding. A
POS-driven translation bonus/penalty could be added which would effectively
model the prior probability of POS-driven translation verses lexically driven
translation.
Seeing the translation “auto – car” in the training data is not sufficient to

produce the translation “autos – cars”. In order to generalize, we can switch
to translation with lemmas and POS-tags. The generation can now be split
into two steps. The first step source and target lemmas (auto,car). The prob-
ability of generating a lemma pair p(lemmasrc, lemmatgt) is conditioned on k
preceding operations like before. The second step generates source and target
words. The probability of the second step p(stemsrc, stemtgt) can be calculated
by the method of maximum-likelihood estimates. A paper based on this idea
was published later at COLING. Please refer to Durrani et al. (2014).
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6.2.6 Additional Features

Linearized Source-Side Monolingual Language Model: Other supportive
features could be added to the discriminative model to improve the reordering
decisions made by the operation sequence model. One such feature can be a
source-side monolingual language model. The idea is to linearize the source-side
so that the word order is the same as on the target-side. Adding a linearized
German-side language model in a phrase-based system has been shown to help
(Feng et al., 2010).

Source-Side Syntax Feature: The operation sequence model is better than
phrase-based SMT at long-distance reordering, but still fails to capture some
syntactic restrictions which are relevant for reordering. In order to improve
the translator, source-side syntax information could be integrated. The source
sentence is parsed. Whenever a jump (or sequence of jumps) occurs during
translation, we compute the path between the start and end position of the
jump in the parse tree. The path consists of the POS-tags of the source and
target words, the direction of the jump, and the sequence of parse tree labels
encountered on the traversal from the start to the end position of the jump.
Other plausible ways of defining such jump features can be explored.
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