
Domain Adaptation Using Neural Network Joint Model

Shafiq Joty, Nadir Durrani, Hassan Sajjad and Ahmed Abdelali
Arabic Language Technologies

Qatar Computing Research Institute — HBKU
{sjoty,ndurrani,hsajjad,aabdelali}@qf.org.qa

Abstract

We explore neural joint models for the task of domain adaptation in machine

translation in two ways: (i) we apply state-of-the-art domain adaptation tech-

niques, such as mixture modelling and data selection using the recently proposed

Neural Network Joint Model (NNJM) [1]; (ii) we propose two novel approaches

to perform adaptation through instance weighting and weight readjustment in

the NNJM framework. In our first approach, we propose a pair of models called

Neural Domain Adaptation Models (NDAM) that minimizes the cross entropy

by regularizing the loss function with respect to in-domain (and optionally to

out-domain) model. In the second approach, we present a set of Neural Fusion

Models (NFM) that combines the in- and the out-domain models by readjusting

their parameters based on the in-domain data.

We evaluated our models on the standard task of translating English-to-

German and Arabic-to-English TED talks. The NDAM models achieved better

perplexities and modest BLEU improvements compared to the baseline NNJM,

trained either on in-domain or on a concatenation of in- and out-domain data.

On the other hand, the NFM models obtained significant improvements of up to

+0.9 and +0.7 BLEU points, respectively. We also demonstrate improvements

over existing adaptation methods such as instance weighting, phrase-table fill-

up, and linear and log-linear interpolations.

Keywords:

Machine Translation, Domain Adaptation, Neural Network Joint Model,

Distributed Representation of Texts, Noise Contrastive Estimation.

Preprint submitted to Journal of Computer Speech and Language February 9, 2017

1. Introduction

Parallel data required to train Statistical Machine Translation (SMT) sys-

tems is often inadequate as it is typically collected opportunistically from wher-

ever available [2]. The conventional wisdom is that more data improves the

translation quality. Additional data however, may not be best suited for tasks

such as translating TED talks [3], patents [4] and educational content [5], that

posit the challenges of dealing with word-sense ambiguities and stylistic vari-

ance of other genres. When additional data, later referred as out-domain data,

is much larger than in-domain data, the resultant distribution can get biased

towards out-domain, yielding a sub-optimal system. For example, an Arabic-to-

English SMT system trained by simply concatenating in- and out-domain data

translates the Arabic phrase “PAJ

�
J

	
kCË Y

K@ 	QË @ ÉÒmÌ'@

�
éÊ¾

�
�Ó 	á«”, to “about the prob-

lem of unwanted pregnancy”. This translation is inaccurate in the context of

the in-domain data, where it should be translated to “about the problem of

choice overload”. The sense of the Arabic phrase taken from out-domain data

completely changes the meaning of the sentence.

Domain adaptation aims to preserve the identity of the in-domain data while

exploiting the out-domain data in favor of the in-domain data and avoid possible

drift towards out-domain jargon and style. This is typically done either by

selecting a subset from the out-domain data, which is closer to the in-domain

[6, 7], or by reweighting the probability distribution in favor of the in-domain

data [8, 9].

Joint sequence ngram-based models [10, 11, 12] have shown to be effective

in improving the quality of machine translation and have achieved state-of-

the-art performance recently. Their ability to capture non-local dependencies

makes them superior to the traditional models, which do not consider contextual

information across phrasal boundaries. Such models however suffer from data

sparsity. As the length of the sequence increases, the test sequences are likely

to be different from the ones used for training the models. To overcome this

2

problem, a transition towards continuous space modeling using neural networks

has been proposed [1, 13, 14]. In this framework, a distributed representation

is learned for each word in the process of modeling the word sequences.

We hypothesize that the distributed vector representation of neural models

helps to bridge the lexical differences between the in-domain and out-domain

data, and adaptation is necessary to avoid deviation and drift of the model from

the in-domain, which otherwise happens because of the large out-domain data.

In this paper, we explore Neural Network Joint Model (NNJM) proposed

by Devlin et al. [1] for the task of domain adaptation in Statistical Machine

Translation (SMT). Preliminarily, we customize state-of-the-art methods in do-

main adaptation, such as mixture modelling [8] and MML [15] to be used with

NNJM. We train NNJM models from in- and out-domain data individually and

interpolate them linearly or log-linearly to perform adaptation. We also tried

NNJM-based data selection similar to MML filtering. Later, we propose two

sets of novel models based on the NNJM framework: (i) Neural Domain Adapta-

tion Models (NDAM), where we minimize the cross entropy by regularizing the

loss function with respect to in-domain (and optionally to out-domain) model(s);

(ii) Neural Fusion Models (NFM), where we combine in- and out-domain models

and readjust their parameters to minimize the loss on the in-domain sequences.

The NDAM models use data dependent regularizations in their loss functions

to perform instance weighting. In our first NDAM model (NDAM-v1), we use

a regularizer based on an in-domain model to bias the resultant model towards

the in-domain data. In the second model (NDAM-v2), we additionally use an

out-domain model to penalize out-domain sequences that are similar to the out-

domain data. The regularizers in our loss functions are inspired from the data

selection methods proposed in [7, 15].

In the NFM models we train in- and out-domain NNJM models and fuse

them by readjusting their parameters towards in-domain data. This is achieved

by backpropogating errors from the output layer to the word embedding layer

of each model. In a variant of the NFM model, we restrict backpropogation

to only the outermost hidden layer and adjust only the final layer combination

3

weights.

We evaluated our models against strong baselines on a standard task of

translating IWSLT TED talks for English-to-German (EN-DE) and Arabic-

to-English (AR-EN) language pairs using BLEU [16]. The baseline MT system

uses an NNJM trained on a concatenation of in- and out-domain data (NNJMc).

In the adapted models we simply replace the baseline NNJM model with our

adapted versions. The most relevant baseline to our work is the fine-tuning

method proposed in [17]. This method first learns a neural model on the con-

catenated data, then trains it further on the in-domain data to tune the model

towards in-domain. We applied fine-tuning to the NNJM model and report it

as an additional baseline.

We also compared our models against state-of-the-art model adaptation tech-

niques including phrase-table fill-up [18], phrase-table interpolation and instance

(phrase-level) weighting [8, 9], and also against existing data selection methods

like Modified-Moore-Lewis (MML) [15]. Below is a summary of our main find-

ings:

• The NDAM models gave an average improvement of +0.4 BLEU points

over the best baseline. NDAM-v1 performed better on English-to-German

and NDAM-v2 performs better on Arabic-to-English.

• The NNJM mixture models also gave average improvements of up to +0.4

BLEU points. Log-linear interpolation performed slightly worse than lin-

ear interpolation on Arabic-to-English.

• Fine-tuning NNJM using in-domain data, was found to be quite effective

for English-to-German pair but not for the Arabic-English direction.

• The neural fusion models (NFM) yielded the best improvements of up

to +0.9 BLEU points in English-to-German and +0.7 BLEU points in

Arabic-to-English. The NFM variation [19] which tunes only the final-

layer weights, performed slightly worse than its deeper variant.

4

• Our fusion models also outperformed state-of-the-art translation model

adaptation techniques such as linear interpolation of phrase-tables, in-

stance weighting, and phrase-table fill-up methods. The gains were found

to be additive in the case of Arabic-to-English.

• Data selection based on NNJM model performed on par with MML based

selection, demonstrating occasional gains.

• We further demonstrated that the performance of our models is additive

to data selection.

This article builds upon two previous conference papers: (i) Joty et al. [20]

which presented the NDAM models, and (ii) Durrani et al. [21], which pre-

sented interpolation of NNJMs. Compared to these papers, the main novelties

introduced in this paper are: (i) the fusion models (the best performing mod-

els) to combine multiple NNJMs, and (ii) more comparisons and analysis of the

results, which gives us more insights of the models.

The rest of the paper is organized as follows. Section 2 revisits the NNJM

model. Section 3 gives an account on existing de facto domain adaptation

methods and our customization to enable them with the NNJM model. Sections

3.2 and 3.3 present novel neural models for domain adaptation. Section 4 provide

implementation details of our models. Section 5 gives details on experimental

setup and results. Section 6 gives a brief account on the related work and

Section 7 concludes the paper with future directions.

2. Neural Network Joint Model

There has been a great deal of effort dedicated to neural networks and word

embeddings in recent years with applications to SMT and other natural language

processing tasks [13, 22, 23, 24, 25, 26, 27, 28, 29].

Neural models are fast becoming the state-of-the-art in machine translation.

The ability to generalize and better capture non-local dependencies gives them

edge over traditional models. The two most prevalent approaches are: (i) to use

5

the neural model as a feature inside the SMT decoder [1, 30], and (ii) to build

an end-to-end translation system [17, 31, 32] designed as a fully trainable model,

of which every component is tuned based on training corpora to maximize its

translation performance. Our work falls in the former category.

Devlin et al. [1] recently proposed a neural bilingual model called Neural

Network Joint Model (NNJM) and integrated it into the SMT decoder as an ad-

ditional feature. We use the NNJM as the base model for our domain adaptation

work. In the following, we revisit the NNJM briefly.

2.1. Model

Given a source sentence S and its corresponding target sentence T , the

NNJM model computes the conditional probability P (T |S) as follows:

P (T |S) ≈
|T |∏
i

P (ti|ti−1 . . . ti−p+1, si) (1)

where, si is a q-word source window for the target word ti based on the one-to-

one (non-NULL) alignment of T to S. Notice that this is essentially a (p+ q)-

gram neural network LM (NNLM) originally proposed by Bengio et al. [13].

Figure 1 shows a simplified NNJM with a target context window of 2-words and

and a source context window of 3-words. In this example, the target word being

modelled is choice, and the source context contains its aligned word PAJ

�
J

	
kCË and

two of its neighbouring words, Y

K@ 	QË @ and ÉÒmÌ'@. The target-side context contains

problem and of, the two previous words of the currently modelled choice.

In the model each input word (source or target side) in the context is rep-

resented by a D dimensional vector in the shared look-up layer L ∈ R|Vi|×D,

where Vi is the input vocabulary; L is considered as a model parameter to be

learned. The look-up layer then creates a context vector xn representing the

context words of the (p + q)-gram sequence by concatenating their respective

vectors in L. The concatenated vector is then passed through the non-linear

hidden layers to learn a high-level representation, which is in turn fed to the

output layer. The output layer has a softmax activation defined over the output

6

PAJ

�
J

	
kCË (choice)

Y

K@ 	QË @ (over)

ÉÒmÌ'@ (load)

problem

of

Hidden

layer

φ(xn)

Look-up

layer

xn

Output

layer

C

ymn

yn=choice

M

W

U

ψ

π

Figure 1: A simplified neural network joint model with noise contrastive loss. We use a target

history of 2 words and a source context of 3 words. For illustration, the output yn is shown as a

single categorical variable (scalar) as opposed to the traditional one-hot vector representation.

vocabulary Vo of target words. Formally, the probability of getting k-th word

in the output given the context xn can be written as:

P (yn = k|xn, θ) =
exp (wT

k zn)∑|Vo|
m=1 exp (wT

mzn)
(2)

where zn = φ(xn) defines the transformations of xn through the hidden layers,

and wk are the weights from the last hidden layer to the output layer. For

notational simplicity, henceforth we will use (xn, yn) to represent a training

sequence. By setting p and q to be sufficiently large, NNJM can capture long-

range cross-lingual dependencies between words, while still overcoming the data

sparseness issue by virtue of its distributed representations (i.e., word vectors).

A similar model was earlier proposed by Le et al. [14], although they reorder

the source to be in the target order, and use the model only for re-ranking.

A major bottleneck in NNJM is to surmount the computational cost involved

in training the model and applying it for MT decoding. Devlin et al. [1] pro-

posed two techniques to speed up the computation during decoding. The first

7

one is to pre-compute the hidden layer computations and fetch them directly as

needed during the decoding. The second technique is to train a self-normalized

NNJM to avoid computation of the softmax normalization factor (i.e., the de-

nominator in Equation 2) in decoding. However, self-normalization does not

solve the computational cost involved in training the model. In the following,

we describe a method called noise contrastive estimation to address this issue.

2.2. Noise Contrastive Estimation

The standard way to train neural network language models (NNLMs) is to

minimize the negative log likelihood (or cross entropy) of the training data:

J(θ) = −
N∑

n=1

|Vo|∑
k=1

ynk log P (yn = k|xn, θ) (3)

where, ynk = I(yn = k) is an indicator variable (i.e., ynk=1 when yn=k, other-

wise 0). Optimization is typically performed using first-order (gradient-based)

online methods, such as stochastic gradient descend with the standard back-

propagation algorithm. Unfortunately, training NNLMs are impractically slow

because for each training instance (xn, yn), the softmax output layer (see Equa-

tion 2) needs to compute a summation over all words in the output vocabulary.1

Noise contrastive estimation or NCE [33] provides an efficient and stable way to

avoid this repetitive computation, which has recently been applied to different

NNLMs [30, 34]. We can re-write Equation 2 as follows:

P (yn = k|xn, θ) =
σ(yn = k|xn, θ)

Z(φ(xn),W)
(4)

where σ(.) is the unnormalized score and Z(.) is the normalization factor. In

NCE, we consider Z(.) as an additional model parameter along with the regular

parameters, i.e., weights, look-up vectors. Notice that Z(.) depends on the

input context, xn, which means one needs to compute it for every possible

1This would take few weeks for a modern CPU machine to train a single NNJM model on

a moderately sized parallel training corpus.

8

input context in our training data, making it difficult to scale to large number

of contexts encountered with large context sizes. Fortunately, it has been found

that fixing Z(.) to 1 instead of learning it during training does not affect the

model performance [34]. Hence, we set Z(.) to 1 in training our models, which

has now become a common practice [30, 27].

In training with NCE, for each training instance (xn, yn), we add M noise

samples {(xn, y
m
n)}Mm=1 by sampling ymn from a known noise distribution ψ (e.g.,

unigram, uniform); see the plate notation in Figure 1. NCE loss is then defined

as such to discriminate a true instance from a noisy one. Let C ∈ {0, 1} denote

the class of an instance with C = 1 indicating true and C = 0 indicating noise.

NCE minimizes the following conditional negative log likelihood:

J(θ) = −
N∑

n=1

[
log[P (C = 1|yn,xn, θ)] +

M∑
m=1

log[P (C = 0|ymn ,xn, ψ)]
]

(5)

=

N∑
n=1

[
log [P (yn|C = 1,xn, θ)P (C = 1|π)] +

M∑
m=1

log [(P (ymn |C = 0,xn, ψ))P (C = 0|π)]− (M + 1) logQ
]

(6)

where Q = P (yn, C = 1|xn, θ, π) + P (ymn , C = 0|xn, ψ, π) is a normalization

constant. After removing the constant terms, Equation 6 can be simplified as:

J(θ) = −
N∑

n=1

|Vo|∑
k=1

[
ynk log σnk +

M∑
m=1

ymnk logψnk

]
(7)

where ψnk =P (ymn = k|xn, ψ) is the noise distribution, σnk =σ(yn = k|xn, θ) is

the unnormalized score at the output layer (Equation 4), and ynk and ymnk are

indicator variables as defined before. NCE reduces the number of computations

needed at the output layer from |Vo| to M + 1, where M is a small number

in compared to the output vocabulary size |Vo|. In all our experiments we use

NCE loss with M = 100 samples in accordance to [34].

9

3. Domain Adaptation with Neural Network Joint Model

While additional data is often beneficial for a general purpose SMT system,

an MT system trained on such corpora may not be optimal for translating texts

in new domains such as medical, legal or lecture. MT systems trained from a

simple concatenation of small in-domain and large out-domain data often per-

form below par because the out-domain data is often distant or overwhelmingly

larger than the in-domain data. Additional data increases lexical ambiguity

by introducing new senses to the existing in-domain vocabulary. In domain

adaptation, our goal is to best exploit the out-domain data, while preserving

the specificity of the in-domain data, thus avoiding possible drifts toward out-

domain jargon and style.

The ability to generalize and learn complex semantic relationships [35] gives

a strong motivation to use the NNJM for the task of domain adaptation in ma-

chine translation. Initially we explore the existing methods for domain adap-

tation with NNJM, namely data selection and mixture modelling. Then we

propose novel neural models for domain adaptation in SMT. In the interest of

coherence and similarity of methods, we describe the methods in the following

order: data selection using NNJM in Subsection 3.1, regularized neural adap-

tation models (NDAMs) in Subsection 3.2, and finally mixture modeling with

linear interpolation and neural fusion models (NFM) in Subsection 3.3.

3.1. Data Selection

The data selection method in domain adaptation attempts to filter out harm-

ful data from the training corpora. A number of data selection methods have

been proposed for SMT [7, 15]. We use difference in cross entropies proposed in

[7]. More specifically, we first train an NNJM model on the in-domain corpus,

and then train another NNJM model on the out-domain data. Then we score

the out-domain (parallel) sentences as follows:

score(s, t) = HI(s, t)−HO(s, t) (8)

10

where (s, t) constitutes the bilingual sequences achieved by augmenting stream

of source and target sequences extracted from the bilingual sentence pairs and

their alignments. HD is the cross-entropy between the NNJM model and an

empirical n-gram distribution in domain D ∈ {I,O}.

We select the top P% lowest-scoring sentences to train our models. The

selected data can be used to train a complete SMT system and/or to train a

new NNJM model to be used as an additional feature in the decoder.

The bilingual characteristic of the NNJM model makes our method compa-

rable to the modified Moore-Lewis (MML) selection method of Axelrod et al.

[15], which trains source- and target-side n-gram language models separately

from the in- and out-domains and takes a sum of cross-entropy differences over

each side of the corpus. The advantages of using NNJM over MML for data

selection are: (i) NNJM captures semantic similarity by virtue of its distributed

continuous representation as opposed to the discrete (n-gram) representation of

MML, and (ii) NNJM scores source and target sequences by modelling their

dependencies jointly, where MML does this disjointly, and therefore, may not

be that effective. The disadvantage, however, is that the time require to train

a neural model is significantly more.

Data selection could be useful in training scenarios with memory constraints.

However, a down-side of this approach is that it requires extensive amount of

experimentation to find an optimal cut-off point P . An alternative to data

selection is model weighting, where we use all the data, but skew the probability

distribution towards in-domain data. In the following subsections, we present

three novel adaptation techniques based on the NNJM model.

3.2. Regularized Neural Adaptation Models

Our first approach is to learn an adapted model from the complete data but

to use a data dependent regularization to restrict it from deviating towards the

out-domain data. Based upon this idea, we propose two novel extensions of the

NNJM model for domain adaptation, which we call Neural Domain Adaptation

Models (NDAM). Our models add regularization to its loss function either with

11

respect to the in-domain only or both in- and out-domains. For both mod-

els, we first present the regularized loss function using the standard softmax

(normalized) output, then the corresponding unnormalized NCE output.

3.2.1. Adaptation by Regularizing with respect to In-domain

In our first neural adaptation model NDAM-v1 (NDAM version 1), we use a

regularizer (or prior) based on the in-domain model to bias the resultant model

towards the in-domain data. Let θi be an NNJM model already trained on

the in-domain data. We train an adapted model θa on the complete in- and

out-domain data, but regularizing it with respect to the in-domain model θi.

Formally, we redefine the normalized loss function of Equation 3 as follows:

J(θa) = −
N∑

n=1

|Vo|∑
k=1

[
λ ynk logP (yn = k|xn, θa) + (1− λ)ynk

P (yn = k|xn, θi) logP (yn = k|xn, θa)
]

(9)

= −
N∑

n=1

|Vo|∑
k=1

[
λ ynk log ŷnk(θa) + (1− λ) ynk pnk(θi) log ŷnk(θa)

]
(10)

where ŷnk(θa) is the softmax output and pnk(θi) is the probability of the training

instance according to the in-domain model θi. Notice that the loss function

minimizes the cross entropy or Kullback-Leibler (KL) divergence of the current

model θa with respect to the gold labels yn and to the in-domain model θi.

The mixing parameter λ ∈ [0, 1] determines the relative strength of the two

components.2 Similarly, we can re-define the NCE loss of Equation 7 as:

J(θa) = −
N∑

n=1

|Vo|∑
k=1

[
λ ynk log σnk + (1− λ) ynkpnk(θi) log σnk

+

M∑
m=1

ymnk logψnk

]
(11)

2We used a balanced value λ = 0.5 for our experiments.

12

We use stochastic gradient descend with backpropagation to train this model.

The derivatives of J(θa) with respect to the final layer weight vectors wj are:

∇wj
J(θa) = −

N∑
n=1

[
λ (ynj − σnj) + (1− λ)[pnj(θi)−

∑
k

ynk pnk(θi) σnj]
]
(12)

3.2.2. Adaptation by Regularizing with respect to In- and Out-domains

The regularizer in NDAM-v1 is based on an in-domain model θi, which puts

higher weights to the training instances (i.e., n-gram sequences) that are similar

to the in-domain ones. This might work better when the out-domain data is

similar to the in-domain data. In cases where the out-domain data is different,

we might want to build a more conservative model that penalizes training in-

stances for being similar to the out-domain ones. Our second adaptation model

NDAM-v2 (NDAM version 2) is based upon this hypothesis.

Let θi and θo be the two NNJM models already trained from the in- and

out-domain data, respectively, and θo is trained using the same vocabulary as

that of θi. We define the new normalized loss function as follows:

J(θa) = −
N∑

n=1

|Vo|∑
k=1

[
λ ynk log ŷnk(θa) + (1− λ) ynk[pnk(θi)− pnk(θo)] log ŷnk(θa)

]
(13)

where ynk, ŷnk(θa), pnk(θi) and pnk(θo) are similarly defined as before. This

loss function minimizes the cross entropy of the current model θa with respect

to the gold labels yn and the difference between the in-domain model θi and

the out-domain model θo. Intuitively, the regularizer assigns higher weights to

training instances that are not only similar to the in-domain but also dissimilar

to the out-domain. The parameter λ ∈ [0, 1] determines the strength of the

regularization. The corresponding NCE loss can be defined as follows:

J(θa) = −
N∑

n=1

|Vo|∑
k=1

[
λ ynk log σnk + (1− λ) ynk log σnk(pnk(θi)− pnk(θo))

+

M∑
m=1

ymnk logψnk

]
(14)

13

The derivatives of the above cost function with respect to the final layer weight

vectors wj turn out to be:

∇wj
J(θa) = −

N∑
n=1

[
λ (ynj − σnj) + (1− λ)[pnj(θi)− pnj(θo)

−
∑
k

ynk σnj (pnk(θi)− pnk(θo))]
]

(15)

In a way, the regularizers in our loss functions are inspired from the data

selection methods of Axelrod et al. [15], where they use cross entropy differences

between the in-domain and the out-domain language models to score out-domain

sentences (see Section 3.1). However, our approach is quite different from theirs

in several aspects. First and most importantly, we take the scoring inside model

training and use it to bias the training towards the in-domain model. Both the

scoring and the training are performed at the (bilingual) n-gram level rather

than at the sentence level. Integrating scoring inside the model allows us to

learn a robust model by training/tuning the relevant parameters, while still

using the complete data. Secondly, our models are based on NNJMs, while

theirs utilize the traditional Markov-based generative models.

From another perspective, the regularizers in our models are weighting the

training instances (i.e., bilingual n-grams) with respect to only in-domain (for

NDAM-v1) or both in- and out-domains (NDAM-v2). In that way, our models

are related to the phrase pair weighting method of Foster et al. [36]. They

first train an instance-weighted model from the out-domain data, and then they

combine it with the relative-frequency counts (i.e., n-gram estimates) in the in-

domain data. The instance-weighted model uses a set of usefulness features in

a discriminative model to weight the out-domain phrase counts. The features

are intended to reflect the degree to which a phrase pair belongs to general

language, and its degree of similarity to the in-domain. Our models are thus

fundamentally very different from their approach.

14

3.3. Mixture Models

While regularized training on the complete data based on the in- and out-

domain models (as done by the above NDAM models) helps to build better

adapted models, it does not fully prevent out-domain data from contaminating

the resultant model parameters, especially when the out-domain data is very dif-

ferent from the in-domain data. Another approach to adaptation is to combine

the in- and out-domain models and make a composite model. In the following

we present interpolation and fusion approaches to achieve this.

3.3.1. Interpolation

Our first approach learns the combination weights of the in- and out-domain

NNJM models through linear interpolation. This approach has been extensively

tried out in the literature to interpolate phrase-translation models [8]. Several

metrics such as tf/idf, LSA or perplexity have been employed for weighting.

Here we interpolate multiple NNJM models instead. The mixture weights are

computed by optimizing perplexity on the in-domain tuning set3 using a stan-

dard Expectation Maximization (EM) algorithm. Let θd ∈ {θ1, . . . , θD} rep-

resent an NNJM model trained on domain d, where D is the total number of

domains. The probability of a sequence (xn, yn) can be written as a mixture of

D probability densities, each coming from a different model:

P (yn|xn, θ, λ) =

D∑
d=1

P (yn|xn, zn = d, θd) λd (16)

where P (xn|zn = d, θd) represents the probability of xn assigned by model θd,

and the mixture weights λd satisfy 0 ≤ λd ≤ 1 and
∑D

d=1 λd = 1. In our setting,

θ = {θ1, . . . θD} is known, and we can use EM to learn the mixture weights.

Once we have learned the relative weights of the models based on the in-domain

3The tuning-set is required to be word-aligned and then converted into an augmented

streams of source and target strings (for NNJM) to compute model-wise perplexities.

15

tuning data, we can linearly interpolate the models as:

P (T |S) ≈
|T |∏
i=1

∑
d

λdP (ti|ti−1 . . . ti−n+1, si, θd) (17)

An alternative way to combine the models is through log-linear interpolation by

optimizing weights, directly on BLEU, along with other features inside of the

SMT pipeline.

3.3.2. Neural Fusion Models

In mixture modelling we only learn the mixture weights (or the relative

weights) of the participating models. Learning only the coarse-grained mixture

weights can limit the composite model to be expressive enough to learn the

variability in data patterns. To cope with this limitation, in the fusion models

we readjust a large number of parameters of the participating models to effec-

tively capture the variability in data patterns. In the following we present two

variations of our fusion model.

Neural Fusion Model-I (NFM-I):. Let θi and θo be the parameter sets of the

trained in- and out-domain NNJMs, respectively. We combine the two models

by redefining the softmax output layer (Equation 2) as follows:

P (yn = k|xi
n,x

o
n, θ

i, θo) =
exp ([wi

k,w
o
k]T [zin, z

o
n])∑|Vo|

m=1 exp ([wi
m,w

o
m]

T
[zin, z

o
n])

(18)

where [wi
k,w

o
k] is the concatenation of the output layer weights of in- and out-

domain models, and [zin, z
o
n]T is the corresponding concatenated activations at

the outermost hidden layer. Figure 1 demonstrates the fusion process with two

simplified NNJMs: (i) the in-domain NNJM parameterized by θi = [Ei, U i,W i],

and (ii) the out-domain NNJM parameterized by θo = [Eo, Uo,W o].4

4Although we define the fusion for two NNJM models, this can be easily generalized to

multiple models.

16

source token 1

source token 2

source token 3

target token 1

target token 2

source token 1

source token 2

source token 3

target token 1

target token 2

Ei

Eo

Hidden

layer

φ(xi
n)

φ(xo
n)

Look-up

xi
n

xo
n

Output

layer

C

ysn

yn

S

Wi

Wo

Ui

Uo

ψ

π

Figure 2: Fusion of two simplified neural network joint models with noise contrastive loss. We

use 3-gram target words (i.e., 2-words history) and a source context of size 3. For illustration,

the output yn is shown as a single categorical variable (scalar) as opposed to the traditional

one-hot vector representation.

We train this model on in-domain data using backpropagation on the NCE

objective, where each participating model uses its own noise distribution. The

gradients of the objective with respect to the final layer weight vectors wd
j are:

∇wd
j
J(θ) =

N∑
n=1

[
(ynj − σnj)zdn

]
(19)

where ynj and σnj are similarly defined as in Eq. 3; the superscript d ∈ {i, o}

denotes the domain. We train the model by backpropagating these errors from

the output layer of the neural network to the word embedding layer (i.e., look-up

layer) of each model. Therefore, all the parameters of the participating models

(i.e., E,U and W) are fine-tuned on the in-domain data. Such training yields

adjusted models that are collectively optimized for the target in-domain data.

17

Neural Fusion Model-II (NFM-II):. A variation of the above model is to tune

only the final layer combination weights [wi
k,w

o
k], which can be achieved by

restricting the backpropagation only to the outermost hidden layer of the neural

network models. This model is faster to train than the above model but could

suffer from limited representation power.

Both fusion and linear interpolation have the same number of parameters,

which is the sum of the size of the base models.5 In fusion, we readjust all

the parameters of the base models (NFM-I), or just the output layer weights

(NFM-II), where in linear interpolation, we only learn their mixing weights.

4. Technical Details

In this section, we describe implementation details of our adaptation models,

that we found to be crucial. This includes: (i) using gradient clipping to handle

vanishing/exploding gradient problem in SGD training with backpropagation;

(ii) selecting appropriate noise distribution in NCE, and (iii) special handling

of out-domain words that are unknown to the in-domain.

4.1. Gradient Clipping

Two common issues with training neural networks on large data are the

vanishing and the exploding gradients problems [37]. The error gradients prop-

agated by the backpropagation may sometimes become very small or very large

which can lead to undesired (nan) values in weight matrices, causing the train-

ing to fail. We also experienced the same problem in training our models with

NCE. Since our network is not so deep (only two hidden layers), the issue in

our case was more of gradient exploding than gradient vanishing. Lowering the

learning rate or mini-batch size worked for some datasets, but it was not a ro-

bust solution for many datasets. We adopted the simple solution called gradient

5More specifically, interpolation has few more parameters accounting for the mixture

weights. In contrast, the combination in fusion models is done at the output layer of the

network, thus does not increase the overall number of parameters in the composite model.

18

clipping [38], where we truncate the gradient if it becomes too large or too small.

In our experiments, we limit the gradients to be in the range [−5; +5].

4.2. Noise Distribution in Noise Contrastive Estimation

Training with noise contrastive estimation (NCE) relies on sampling from a

noise distribution (i.e., ψ in Equation 5), and the performance of the models

varies considerably with the choice of the distribution. We explored uniform

and unigram noise distributions in this work. With uniform distribution, every

word in the output vocabulary has the same probability to be sampled as a

noise sample. The unigram noise distribution is a multinomial distribution over

words constructed by counting their occurrences in the output (i.e., n-th word

in the n-gram sequence). In our experiments, unigram distribution delivered

much lower perplexity and better MT results compared to the uniform one.

Mnih and Teh [34] also reported similar findings on perplexity in their study.

4.3. Dealing with Unknown Words

In order to reduce the training time and to learn better word representations,

it is common to train neural language models on corpora containing frequent

vocabulary words only and grouping rare (and unseen) words under a common

class unk. This results in a large number of n-gram sequences containing at least

one unk word and thereby, makes unk a highly probable word in the model.6

Recall that the adaptation models proposed in Section 3.2 rely on scoring

out-domain sequences using models that are trained based on the in-domain

vocabulary. To score out-domain sequences using a model, we need to generate

the sequences using the same vocabulary on which the model was trained. The

out-domain words that are not seen in the in-domain data also map to the unk

class. As a result, out-domain sequences containing unks get higher probability

although they are distant from the in-domain data.

630% of n-gram sequences in our Arabic-English in-domain data contains at least one unk.

19

A solution to this problem is to have an in-domain model that can differ-

entiate between its own unk class (resulted due to the pruned vocabulary) and

the unknown words coming from the out-domain data (i.e., the actual unknown

words). We do this by introducing a new class unko to represent the latter.

We train the in-domain model by adding a few dummy sequences with unko

occurring in both source and target sides. This enables the model to learn unk

and unko separately, while giving low probability mass to unko. Note that the

n-gram sequences in the out-domain data contain both unk and unko classes

depending on whether a word is unknown to only pruned in-domain vocabulary

(i.e., unk) or is unknown to full in-domain vocabulary (i.e., unko).

5. Experiments

In this section, we present the experimental setup along with the results. We

first describe the datasets used and the system settings including the settings

for the neural networks and the SMT pipeline, and then we discuss the results.

5.1. Data

We experimented with the data made available for the translation task of the

International Workshop on Spoken Language Translation (IWSLT) [3]. We used

TED talks as our in-domain (≈ 177K sentences) corpus. For Arabic-to-English

pair, we used the multiUN (≈ 3.7M sentences) [39] as our out-domain corpora.

For English-to-German, we used data made available (≈ 4.4M sentences) for the

9th Workshop on Machine Translation7 as our out-domain data. Table 1 shows

the size of the data used. Language models were trained on all the available

monolingual data (English: ≈ 287.3M and German: ≈ 59.5M sentences). We

used Farasa segmenter [40] to tokenize Arabic and the default Moses tokenizer

for English-and German. All data was truecased. See Table 1 for data sizes.

7http://www.statmt.org/wmt14/translation-task.html

20

English-German Arabic-English

Corpus Sent. TokEN TokDE Corpus Sent. TokAR TokEN

iwslt 177K 3.5M 3.3M iwslt 186K 2.7M 1.8M

news 200K 5.0M 5.1M un 3.7M 12.4M 12.3M

ep 1.9M 51.0M 48.7M - - - -

cc 2.3M 57.5M 53.9M - - - -

Test Set Sent. TokEN TokDE Corpus Sent. TokAR TokEN

tune 2437 51K 48K tune 2456 48K 52K

test-11 1433 4K 23K 2 test-11 1199 21K 24K

test-12 1700 28K 26K test-12 1702 30K 32K

test-13 993 18K 17K test-13 1169 26K 28K

Table 1: Statistics of the English-German and Arabic-English training corpora in terms of

Sentences and Tokens (Source/Target). Tokens are represented in Millions. ep = Europarl,

cc = Common Crawl, un = United Nations

Training NN models is expensive.8 In the interest of time, we therefore

reduced the NN training to a subset of 1 Million sentences containing all the

in-domain data and a random selection of sentences from the out-domain data.

We use the test set of IWSLT-2011 as the development set and the test sets

of IWSLT-2012 and IWSLT-2013 as the test sets. The systems were tuned on

the concatenation of the development and the test sets of IWSLT-2010. The

tuning set was also used to measure the perplexities of different models.

5.2. System Settings

NNJM and NDAM. The NNJM models were trained using the Neural Prob-

abilistic Language Model (NPLM) toolkit [30].9 We used a target history of

8Training model with the whole corpus requires roughly 12 days of wall-clock time (18

hours/epoch) to train NNJM models on our machines (on a Linux Ubuntu 12.04.5 LTS running

on a 16 Core Intel Xeon E5-2650 2.00Ghz and 64GB RAM). We ran a baseline experiment

with all the data and did not find it better than the system trained on randomly selected

subset.
9http://nlg.isi.edu/software/nplm/

21

4 words and an aligned source window of 9 words, forming a joint stream of

14-grams. We restricted the source and the target side vocabularies to the 20K

and 40K most frequent words. Larger vocabulary sizes increased the training

time significantly, but did not improve the MT performance. The reason could

be that since our in-domain data (IWSLT) is small (less than 200K sentences),

the smaller vocabulary sizes we are using suffice the purpose.

The word vector size D and the hidden layer size were set to 150 and 750,

respectively. Only one hidden layer is used to allow faster decoding. Training

was done by the standard stochastic gradient descent (SGD) with NCE using

S = 100 noise samples and a mini-batch size of 1000. All models were trained

for 25 epochs. We used identical settings to train the NDAM models, except

for the special handling of unk tokens.

Recently, Luong and Manning [17] demonstrated considerable improvements

by fine-tuning an out-of-domain attention-based NMT towards in-domain data

(i.e., by training the neural network additional epochs on in-domain data). We

also tried this strategy by training an out-domain NNJM and then fine-tuning

it using in-domain data.

Machine Translation Systems. Baseline systems were trained by simply con-

catenating all the data shown in Table 1. To evaluate our work, we included

NNJM model trained on a plain concatenation of the data as a feature in our

baseline system. In the adapted systems, we either replaced it with the NDAM

models trained on weighted concatenation, with the fusion models, where mod-

els are trained independently and adjusted towards in-domain data, with the

interpolated models or with the fine-tuned NNJM model. Later, for comparison

and completeness, we also experimented with training translation models from

in and out-domain separately. We compared performance of our models against

state-of-the-art model adaptation techniques, linear phrase-table interpolation,

instance weighting and fill-up methods. Here phrase-tables were separately

22

trained and then combined using above mentioned methods.10 Finally, we com-

pared our system against MML-filtering [15], although this technique falls in the

array of data-selection methods. The optimal thresholds were found to be 20%

and only 5% in English-German and Arabic-English respectively, upon which

full MT systems were then retrained.

Machine Translation Settings. We trained a Moses system [41], with the the

settings described in [42]: a maximum sentence length of 80, Fast-Aligner for

word-alignments [43], an interpolated Kneser-Ney smoothed 5-gram language

model [44], lexicalized reordering model [45], a 5-gram operation sequence model

[46, 47], with supporting (gaps and jump penalty) features [48] and other de-

faults. We used k-best batch MIRA [49] for tuning. Arabic OOVs were translit-

erated using unsupervised transliteration module [50] in Moses.

5.3. Results

In this section we report our results. First we perform an intrinsic evaluation

of the models by comparing their perplexity values on the tune set. Then we

present the results of different adaptation methods on the translation task.

5.3.1. Intrinsic Evaluation

In Table 2, we compare the baseline NNJM models (i.e., NNJMi and NNJMc)

with our two regularized adaptation models (i.e., NDAM-v1 and NDAM-v2 in

Section 3.2), our deep fusion model (NFM-I in Section 3.3.2) and fine tuning

(FT) method of Luong and Manning in terms of their perplexity numbers on the

in-domain held-out tune set (i.e., development and test sets of IWSLT-2010).11

Recall that all the neural models are trained with NCE objective instead of

the standard log likelihood objective. Therefore, a question may arise whether

one should evaluate the models based on their perplexity (or entropy) values on

10Word alignment is still carried on the concatenated data.
11It does not make sense to compare perplexity numbers for the linear and log-linear models

(Section 3.3). Because of the convex combination that mixture models perform, the mixture

perplexity is always worse than the in-domain baseline.

23

Dom NNJMi NNJMc NFM-I NDAMv1 NDAMv2 FT NNJMm NDAMm

Perplexities on Tune Set (EN-DE)

ID 10.20 - - - -

OD 10.70 6.71 6.59 6.21 6.37 6.71 6.65 6.29

Perplexities on Tune Set (AR-EN)

ID 12.55 - - - -

OD 111.11 11.94 11.25 10.83 10.74 8.5 10.5 10.03

Table 2: Comparison of Perplexities the in-domain tune set: NNJMi = IN Domain NNJM,

NNJMc = IN+OUT Concatenated NNJM, NFM-I = Neural Fusion Model-1, NDAMv∗ =

Neural Domain Adaptation Models, FT = Fine tuned models, NNJMm = NNJM trained on

IN + MML Selected Data, NDAMm = NDAM model trained on IN + MML Selected Data

a held-out dataset. It can be shown that as the number of noise samples per

observation (i.e., S) increases, the NCE gradient approaches the log likelihood

gradient [34]. We use the same number of noise samples across the models (i.e.,

S = 100), which makes their perplexity values on a held-out dataset comparable.

The second column shows the perplexity values for the baseline NNJM

(NNJMi), when the model is trained on IWSLT or UN domains separately. The

perplexity numbers demonstrate how different UN data is from the in-domain

IWSLT — perplexity values of 12.55 vs. 111.11. In comparison, the out-domain

data in English-German is less different than the in-domain 10.20 vs. 10.70.

The third column shows the result of the NNJM, when it is trained on the

concatenation of IWSLT and UN data (NNJMc). The perplexity improves sig-

nificantly showing that there is useful information available in out-domain data,

which can be utilized to improve the in-domain baseline. It also demonstrates

the robustness of neural models as language models. Unlike (discrete) n-gram

models, neural models yield better generalization with the increase of data with-

out completely skewing towards the dominating part of the data. This could be

attributed to the continuous representation of the neural models.

The fourth column shows the perplexity of the fusion model, NFM-I. Notice

that by readjusting the parameters of the in- and out-domain models in the

24

English-to-German Arabic-to-English

System tst11 tst12 tst13 Avg ∆ tst11 tst12 tst13 Avg ∆

Base (NNJMc) 27.3 22.9 24.5 24.9 26.1 29.4 30.5 28.7

NDAM-v1 27.5 23.4 25.1 25.3 +0.4 26.1 29.6 30.9 28.9 +0.2

NDAM-v2 27.4 23.3 24.8 25.2 +0.3 26.3 30.0 30.9 29.1 +0.4

Fine-Tuning 27.7 23.9 25.3 25.6 +0.7 26.1 29.6 30.9 28.9 +0.2

Linear 27.2 23.5 25.0 25.3 +0.4 26.7 30.2 30.3 29.1 +0.4

Log-Linear 27.0 23.8 25.2 25.3 +0.4 26.4 30.0 30.5 29.0 +0.3

NFM-I 27.8 24.1 25.6 25.8 +0.9 26.9 30.2 31.1 29.4 +0.7

NFM-II 27.5 23.9 25.4 25.6 +0.7 26.7 30.0 31.0 29.2 +0.5

Table 3: Comparison against Neural Model Weighting Techniques – NDAM*, NFM = Neural

Fusion Model, Fine-Tuning = Luong and Manning 2015

model combination process, NFM-I gets better perplexity value than NNJMc.

The fifth and sixth columns show results of the regularized adaptation mod-

els NDAM-v1 and NDAM-v2. Both models give better perplexity values than

the baselines and the fusion model. This demonstrates that the data dependent

regularization of the loss function based on the in- (and out-) domain model(s)

is more beneficial for the adaptation task. When we compare the two NDAM

models, we observe that NDAM-v2 yields better perplexity than NDAM-v1

by penalizing instances that are favoured by the out-domain model. The sev-

enth column shows perplexity results for the fine tuning method of Luong and

Manning [17], which gives same perplexity as the baseline (NNJMc for English-

German but much better perplexity in the Arabic-to-English pair.

Finally, we also retrained the NNJM and the NDAM models on the data

that we selected using MML, rather than training on a randomly selected data.

The last two columns in Table 2 show the perplexity values on the held-out

tune set for these two models. We can observe that the perplexity numbers are

better than their counterparts trained on the randomly selected data.

25

5.3.2. Machine Translation Results – Model Adaptation

In this section, we evaluate the performance of our model adaptation meth-

ods extrinsically, by replacing the baseline NNJM models (i.e., NNJMi and

NNJMc) with different adapted versions, and finally also comparing our ap-

proach against existing domain adaptation approaches.

First row in Table 3 shows results for the baseline system, which uses an

NNJM trained on the plain concatenation of in-and out-domain data. The next

block of rows shows results for systems, where the NNJM models are adapted

using weighted concatenation, i.e., using in-domain model (NDAM-v1) or both

in- and out-domain models (NDAM-v2) or by fine tuning. The fine-tuning

method performs much better than the baseline and the NDAM models on the

English-German task but was not as effective on the Arabic-English pair. The

linear and log-linear interpolation of in- and out- NNJM models (see fifth and

sixth rows) performed similarly and gave improvements of up to +0.4 BLEU

points. Next set of rows show results from the fusion models which outperformed

the baseline system as well as other neural adapted models. Fusion Model-

I, which performs deeper fusion (i.e., till the embedding layer) worked better

than Fusion Model-II, where backpropagation is restricted only to the out-most

hidden layer, showing that there is an additional value in doing a deeper fusion.

Next we compare our model with the domain adaptation methods available

in Moses (See Table 4). We will only compare the results against our best

adaptation model (NFM-I). Here instead of adapting the NNJM model, we

perform adaptation on translation-tables, by interpolating in- and out-domain

phrase-tables, through instance weighting or through fill-up method. Instance

weighting method gave best improvements among the lot, however, our fusion

model outperformed these methods in both language pairs and in most of the

test-sets. Additional experiments combining phrase-table adaptation and fusion

model found gains to be additive in Arabic-to-English language pair. But no

further improvements were observed in English-to-German, except for test2011.

To gain further insights of the models, we analyzed some translations of the

26

English-to-German Arabic-to-English

System tst11 tst12 tst13 Avg ∆ tst11 tst12 tst13 Avg ∆

Base (NNJMc) 27.3 22.9 24.5 24.9 26.1 29.4 30.5 28.7

PT Interpolation 27.5 23.2 24.8 25.2 +0.3 26.4 29.9 30.3 28.9 +0.2

Instance Wt. 27.3 23.4 25.1 25.3 +0.4 26.9 30.3 30.3 29.2 +0.5

Fill Up 27.3 23.4 24.6 25.1 +0.2 26.4 29.7 30.4 28.9 +0.2

NFM-I 27.8 24.1 25.6 25.8 +0.9 26.9 30.2 31.1 29.4 +0.7

+ Instance Wt. 28.0 23.8 25.3 25.7 +0.8 27.5 30.7 30.8 29.7 +1.0

Table 4: Comparison against Translation Model Adaptation Techniques – Linear Interpola-

tion and Instance Weighting (Sennrich 2012), Fill-up Method (Bisazza et al. 2011), NFM =

Neural Fusion Model (this work)

baseline system, Base (NNJMc), and spotted several cases of lexical ambiguity

caused by the out-domain data. For example, the Arabic phrase “PAJ

�
J

	
kCË Y

K@ 	QË @ ÉÒmÌ'@”

can be translated to choice overload or unwanted pregnancy. The latter trans-

lation is incorrect given the in-domain context. The bias created by the out-

domain data caused Base (NNJMc) to choose the contextually incorrect trans-

lation unwanted pregnancy. However, our adapted systems were able to trans-

late the phrase correctly. In another example “?
	

àYJ. Ë @
�
é
�
¯AJ
Ë

	á« @
	
XAÓ” (How about

fitness?), the word “
�
é
�
¯AJ
Ë” was translated to proprietary incorrectly by Base

(NNJMc), a translation frequently observed in the out-domain data. The adapted

models translated it correctly to fitness, as preferred by the in-domain data.

5.3.3. Machine Translation Results – Data Selection Methods

In this subsection we report our results for applying data selection methods

to the training data. In this method we select P% top scoring data instances

from the out-domain data to include it in the training set. To select the right

threshold P , we experimented with 0%, 2.5%, 5%, 10%, 20%, 40% and 100%.

Initially we tried to train n-gram language models from the selected data and

computed perplexity on the held-out tuning set. But this did not give any

concluding evidence. The perplexity numbers kept increasing (See Figure 3).

27

●

●

●

●

●

●

●

●

●

●

250

300

350

2.5% 5% 10% 20% 40%
Data Ratio

P
er

pe
lx

ity Langauge
●

●

Arabic

English

Figure 3: Perplexity values for selected amounts from the out-domain data

Only by training full MT pipeline on a concatenation of in-domain and the

selected data, we found the optimal thresholds (5% for Arabic-English and 20%

for English-German). We validated this on our dev-set (IWSLT-2011).

In Table 5, we experiment with the MML-based filtering and probe whether

our model can also improve on top of data selection. Firstly selecting no out-

domain data degrades the English-to-German system. On the contrary, the

Arabic-to-English system substantially improves. This shows that general do-

main data is helpful for English-to-German and much of the out-domain data

English-to-German Arabic-to-English

System tst11 tst12 tst13 Avg ∆ tst11 tst12 tst13 Avg ∆

Cat 27.3 22.9 24.5 24.9 26.1 29.4 30.5 28.7

ID 26.7 22.5 23.6 24.3 27.2 30.0 30.2 29.1

MML 26.9 22.9 24.4 24.7 -0.2 27.4 30.8 30.9 29.7 +0.6

NNJM 27.0 23.1 23.9 24.7 -0.2 27.6 30.7 31.1 29.8 +0.7

Table 5: Comparison of NNJM-based Selection against MML-based Selection (Axelrod et al

2011)

28

English-to-German Arabic-to-English

System tst11 tst12 tst13 Avg ∆ tst11 tst12 tst13 Avg ∆

MML 26.9 22.9 24.4 24.7 27.4 30.8 30.9 29.7

+NDAM-v1 26.8 23.1 24.8 24.9 +0.2 27.5 31.0 31.2 29.9 +0.2

+NFM-I 27.6 23.1 25.0 25.2 +0.5 27.8 31.3 31.1 30.1 +0.3

Table 6: Comparison of Models trained on the Selected Data

(UN corpus) used in these experiments is harmful in the case of Arabic-to-

English. These observations are inline with the results reported in [51] for

English-German and [52, 53] for Arabic-English. Best MML results were ob-

tained by selecting only 5% of the out-domain data. In comparison, data selec-

tion was found to be less useful in the case of English-to-German. NNJM-based

selection gave similar improvement as the MML selection. The overlap between

the data instances selected by the two methods was roughly 77%, which explains

the similarity of the results. In an ideal scenario model adaptation techniques

should not rely on data filtering, but should be able to select best hypotheses

from the unpruned search space. However, this is not practical – given the large

amounts of generic data, and the slow training time of neural networks, data

selection is a mandatory first step. Also, the decoder makes more search errors

when presented with a full search space.

In additional experimentation (Table 6), we found that using our NDAM-v1

and fusion models instead of baseline NNJM still gave improvements (up to

+0.5 and +0.3 in English-German and Arabic-English, respectively) on top of

MML-based systems. When trained on selected data, and with pruned search

space, our model achieves optimal performance. These results show that there

is a merit in combining model adaptation with data selection.

6. Related Work

Previous work on domain adaptation in MT can be broken down broadly

into two main categories namely data selection and model adaptation.

29

Data selection has shown to be an effective way to discard poor quality or

irrelevant training instances, which when included in the MT systems, hurt its

performance. The idea is to score the out-domain data instances using a model

trained from the in-domain data and then to apply a cut-off threshold based on

the resulting scores. The MT system can then be trained on the concatenation

of the in-domain and the selected portion of the out-domain data that is closer

to in-domain. Selection based methods can be helpful to reduce computational

cost when training is expensive and also when memory is constrained.

Data selection was earlier done for language modeling using information

retrieval techniques [54] and using perplexity measure [7]. Axelrod et al. [15]

further extended the work of [7] to translation model adaptation by using both

source side and target side language models. Duh et al. [51] used recurrent

neural network language model instead of an ngram-based language model to

do the same. More recently, Liu et al. [55] and Hoang and Sima’an [56] use

translation model features to do data selection.

The downside of data selection is that finding an optimal cut-off threshold

is a time consuming process. Therefore rather than filtering less useful data, an

alternative way is to down-weight it and boost the data closer to the in-domain.

It is robust than selection since it takes advantage of the complete out-domain

data with intelligent weighting towards the in-domain.

Fedrico [57] proposed adaptation of n-gram language models based on the

minimum discrimination information principle, where a background language

model is adapted to fit constraints (e.g., in the form of a unigram distribution) on

its marginal distributions that are derived from in-domain data. Matsoukas et

al. [6] proposed a classification-based sentence weighting method for adaptation.

Foster et al. [36] extended this by weighting phrases rather than sentence pairs.

Other researchers have carried out weighting by merging phrase-tables through

linear interpolation [58, 59] or log-linear combination [60, 18, 9] and through

phrase training based adaptation [52]. Chen et al. [61] used vector space model

for adaptation at phrase level. Every phrase pair is represented as a vector

where every entry in the vector reflects its relatedness with each domain. Chen

30

et al. [62] also applied mixture model adaptation for reordering model.

Domain adaptation in neural MT is carried out by the fine-tuning method

[17]. The idea is to train neural network model on the large out-domain corpus

and then run additional iterations using only in-domain data. Do et al. [63]

applied their Continuous Translation Model (CTM) in adaptation scenario by

training SMT system with large out-domain data and training CTM on the

in-domain data. Although they only used the model for n-best rescoring.

7. Conclusions and Future Work

We proposed novel domain adaptation models by: (i) regularizing loss func-

tions of the adapted model, and (ii) by fusing in- and out-domain models.

The former uses data dependent regularization in their loss function to perform

(soft) data selection inside the model, while the latter combines the in-domain

and the out-domain models by readjusting their parameters. We also explored

how the existing domain adaptation techniques such as mixture modelling and

data selection can be used with the NNJM. Through extensive experimenta-

tion, we found our deep fusion model to outperform the other discussed neural

adaptation methods as well as phrase-table adaptation techniques. Regularized

adaptation models were also shown to improve, but their performance was on

par with the existing techniques. We also demonstrated that our models are

complementary to the existing techniques and together the models can achieve

a better translation quality.

Although this study focused on fusing multiple neural models for domain

adaptation in phrase-based SMT, we would like to adopt the idea in the end-to-

end NMT systems [31], where the goal will be to fuse multiple NMT systems.

We also intend to experiment with other neural network architecture including

recurrent neural networks with long short term memory cells and gated recurrent

units [64]. We also plan to explore the utility of pre-trained word vectors (e.g.,

word2vec [27]) in the embedding layer and the approximate softmax in the

output layer of the neural network to improve the overall translation quality.

31

References

[1] J. Devlin, R. Zbib, Z. Huang, T. Lamar, R. Schwartz, J. Makhoul, Fast

and robust neural network joint models for statistical machine translation,

in: Proceedings of the 52nd Annual Meeting of the Association for Com-

putational Linguistics (Volume 1: Long Papers), 2014.

[2] P. Koehn, J. Schroeder, Experiments in domain adaptation for statistical

machine translation, in: Proceedings of the Second Workshop on Statistical

Machine Translation, StatMT ’07, Prague, Czech Republic, 2007.

[3] M. Cettolo, J. Niehues, S. Stüker, L. Bentivogli, M. Federico, Report on

the 11th IWSLT Evaluation Campaign, Proceedings of the International

Workshop on Spoken Language Translation, Lake Tahoe, US.

[4] A. Fujii, M. Utiyama, M. Yamamoto, T. Utsuro, Overview of the patent

translation task at the ntcir-8 workshop, in: In Proceedings of the 8th NT-

CIR Workshop Meeting on Evaluation of Information Access Technologies:

Information Retrieval, Question Answering and Cross-lingual Information

Access, 2010, pp. 293–302.

[5] A. Abdelali, F. Guzman, H. Sajjad, S. Vogel, The AMARA corpus: Build-

ing parallel language resources for the educational domain, in: Proceedings

of the Ninth International Conference on Language Resources and Evalua-

tion (LREC’14), Reykjavik, Iceland, 2014.

[6] S. Matsoukas, A.-V. I. Rosti, B. Zhang, Discriminative corpus weight esti-

mation for machine translation, in: Proceedings of the 2009 Conference on

Empirical Methods in Natural Language Processing: Volume 2, EMNLP

’09, 2009.

[7] R. C. Moore, W. Lewis, Intelligent selection of language model training

data, in: Proceedings of the Association for Computational Linguistics

(ACL’10), Uppsala, Sweden, 2010.

32

[8] G. Foster, R. Kuhn, Mixture-model adaptation for smt, in: Proceedings

of the Second Workshop on Statistical Machine Translation, StatMT ’07,

2007.

[9] R. Sennrich, Perplexity minimization for translation model domain adap-

tation in statistical machine translation, in: Proceedings of the 13th Con-

ference of the European Chapter of the Association for Computational

Linguistics, Avignon, France, 2012.

[10] J. B. Mariño, R. E. Banchs, J. M. Crego, A. de Gispert, P. Lambert,

J. A. R. Fonollosa, M. R. Costa-jussà, N-gram-Based Machine Translation,

Computational Linguistics 32 (4) (2006) 527–549. doi:http://dx.doi.

org/10.1162/coli.2006.32.4.527.

[11] N. Durrani, A. Fraser, H. Schmid, H. Hoang, P. Koehn, Can Markov Models

Over Minimal Translation Units Help Phrase-Based SMT?, in: Proceedings

of the 51st Annual Meeting of the Association for Computational Linguis-

tics (Volume 2: Short Papers), Association for Computational Linguistics,

Sofia, Bulgaria, 2013, pp. 399–405.

URL http://www.aclweb.org/anthology/P13-2071

[12] N. Durrani, A. Fraser, H. Schmid, Model With Minimal Translation Units,

But Decode With Phrases, in: Proceedings of the North American Chap-

ter of the Association for Computational Linguistics: Human Language

Technologies (NAACL-HLT’13), Atlanta, Georgia, USA, 2013.

[13] Y. Bengio, R. Ducharme, P. Vincent, C. Janvin, A neural probabilistic

language model, J. Mach. Learn. Res. 3 (2003) 1137–1155.

URL http://dl.acm.org/citation.cfm?id=944919.944966

[14] H.-S. Le, A. Allauzen, F. Yvon, Continuous space translation models with

neural networks, in: Proceedings of the 2012 Conference of the North

American Chapter of the Association for Computational Linguistics: Hu-

man Language Technologies, Association for Computational Linguistics,

33

http://dx.doi.org/http://dx.doi.org/10.1162/coli.2006.32.4.527
http://dx.doi.org/http://dx.doi.org/10.1162/coli.2006.32.4.527
http://www.aclweb.org/anthology/P13-2071
http://www.aclweb.org/anthology/P13-2071
http://www.aclweb.org/anthology/P13-2071
http://dl.acm.org/citation.cfm?id=944919.944966
http://dl.acm.org/citation.cfm?id=944919.944966
http://dl.acm.org/citation.cfm?id=944919.944966
http://www.aclweb.org/anthology/N12-1005
http://www.aclweb.org/anthology/N12-1005

Montréal, Canada, 2012, pp. 39–48.

URL http://www.aclweb.org/anthology/N12-1005

[15] A. Axelrod, X. He, J. Gao, Domain adaptation via pseudo in-domain data

selection, in: Proceedings of the Conference on Empirical Methods in Natu-

ral Language Processing, EMNLP ’11, Edinburgh, United Kingdom, 2011.

[16] K. Papineni, S. Roukos, T. Ward, W.-J. Zhu, BLEU: A Method for Au-

tomatic Evaluation of Machine Translation, in: Proceedings of the 40th

Annual Meeting on Association for Computational Linguistics, ACL ’02,

Morristown, NJ, USA, 2002, pp. 311–318.

[17] M.-T. Luong, C. D. Manning, Stanford neural machine translation sys-

tems for spoken language domain, in: International Workshop on Spoken

Language Translation, Da Nang, Vietnam, 2015.

[18] A. Bisazza, N. Ruiz, M. Federico, Fill-up versus interpolation methods for

phrase-based SMT adaptation, in: Proceedings of the seventh International

Workshop on Spoken Language Translation (IWSLT), 2011, pp. 136–143.

[19] N. Durrani, H. Sajjad, S. Joty, A. Abdelali, A deep fusion model for domain

adaptation in phrase-based mt, in: Proceedings of COLING 2016, the 26th

International Conference on Computational Linguistics: Technical Papers,

The COLING 2016 Organizing Committee, Osaka, Japan, 2016, pp. 3177–

3187.

URL http://aclweb.org/anthology/C16-1299

[20] S. Joty, H. Sajjad, N. Durrani, K. Al-Mannai, A. Abdelali, S. Vogel, How to

Avoid Unwanted Pregnancies: Domain Adaptation using Neural Network

Models, in: Proceedings of the 2015 Conference on Empirical Methods in

Natural Language Processing, Lisbon, Portugal, 2015.

[21] N. Durrani, H. Sajjad, S. Joty, A. Abdelali, S. Vogel, Using joint models

for domain adaptation in statistical machine translation, in: Proceedings

34

http://www.aclweb.org/anthology/N12-1005
http://aclweb.org/anthology/C16-1299
http://aclweb.org/anthology/C16-1299
http://aclweb.org/anthology/C16-1299

of the Fifteenth Machine Translation Summit (MT Summit XV), AMTA,

Florida, USA, 2015.

[22] M. Auli, M. Galley, C. Quirk, G. Zweig, Joint language and translation

modeling with recurrent neural networks, in: Proceedings of the 2013 Con-

ference on Empirical Methods in Natural Language Processing, Seattle,

Washington, USA, 2013.

[23] N. Kalchbrenner, P. Blunsom, Recurrent continuous translation models,

in: Proceedings of the 2013 Conference on Empirical Methods in Natural

Language Processing, Seattle, Washington, USA, 2013.

[24] J. Gao, X. He, W.-t. Yih, L. Deng, Learning continuous phrase representa-

tions for translation modeling, in: Proceedings of the 52nd Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers),

Baltimore, Maryland, 2014.

[25] H. Schwenk, Continuous space translation models for phrase-based sta-

tistical machine translation, in: Proceedings of COLING 2012: Posters,

Mumbai, India, 2012.

[26] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, P. Kuksa,

Natural language processing (almost) from scratch, Vol. 12, JMLR. org,

2011, pp. 2493–2537.

[27] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word

representations in vector space, 2013.

[28] R. Socher, J. Bauer, C. D. Manning, N. Andrew Y., Parsing with compo-

sitional vector grammars, in: Proceedings of the 51st Annual Meeting of

the Association for Computational Linguistics (Volume 1: Long Papers),

Sofia, Bulgaria, 2013, pp. 455–465.

URL http://www.aclweb.org/anthology/P13-1045

[29] G. Hinton, L. Deng, D. Yu, G. Dahl, A. rahman Mohamed, N. Jaitly,

A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath, B. Kingsbury, Deep neural

35

http://www.aclweb.org/anthology/P13-1045
http://www.aclweb.org/anthology/P13-1045
http://www.aclweb.org/anthology/P13-1045

networks for acoustic modeling in speech recognition, Signal Processing

Magazine.

[30] A. Vaswani, Y. Zhao, V. Fossum, D. Chiang, Decoding with large-scale

neural language models improves translation, in: Proceedings of the 2013

Conference on Empirical Methods in Natural Language Processing, 2013.

[31] D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly

learning to align and translate, in: ICLR, 2015.

URL http://arxiv.org/pdf/1409.0473v6.pdf

[32] R. Sennrich, B. Haddow, A. Birch, Improving neural machine translation

models with monolingual data, in: Proceedings of the 54th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers),

Berlin, Germany, 2016.

[33] M. Gutmann, A. Hyvärinen, Noise-contrastive estimation: A new estima-

tion principle for unnormalized statistical models, in: Y. Teh, M. Tit-

terington (Eds.), Proc. Int. Conf. on Artificial Intelligence and Statistics

(AISTATS), Vol. 9 of JMLR W&CP, 2010, pp. 297–304.

[34] A. Mnih, Y. W. Teh, A fast and simple algorithm for training neural prob-

abilistic language models, in: Proceedings of the International Conference

on Machine Learning, 2012.

[35] T. Mikolov, W.-t. Yih, G. Zweig, Linguistic regularities in continuous space

word representations, HLT-NAACL, 2013, pp. 746–751.

[36] G. Foster, C. Goutte, R. Kuhn, Discriminative instance weighting for do-

main adaptation in statistical machine translation, in: Proceedings of the

2010 Conference on Empirical Methods in Natural Language Processing,

Cambridge, MA, 2010.

[37] R. Pascanu, T. Mikolov, Y. Bengio, On the difficulty of training recurrent

neural networks, in: Proceedings of the 30th International Conference on

Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, 2013.

36

http://arxiv.org/pdf/1409.0473v6.pdf
http://arxiv.org/pdf/1409.0473v6.pdf
http://arxiv.org/pdf/1409.0473v6.pdf

[38] T. Mikolov, Statistical Language Models based on Neural Networks, PhD

thesis, Brno University of Technology, 2012.

[39] A. Eisele, Y. Chen, MultiUN: A Multilingual Corpus from United Nation

Documents, in: Proceedings of the Seventh conference on International

Language Resources and Evaluation, Valleta, Malta, 2010.

[40] A. Abdelali, K. Darwish, N. Durrani, H. Mubarak, Farasa: A fast and

furious segmenter for arabic, in: Proceedings of the 2016 Conference of

the North American Chapter of the Association for Computational Lin-

guistics: Demonstrations, Association for Computational Linguistics, San

Diego, California, 2016, pp. 11–16.

URL http://www.aclweb.org/anthology/N16-3003

[41] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi,

B. Cowan, W. Shen, C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin,

E. Herbst, Moses: Open source toolkit for statistical machine translation,

in: Proceedings of the Association for Computational Linguistics (ACL’07),

Prague, Czech Republic, 2007.

[42] N. Durrani, B. Haddow, P. Koehn, K. Heafield, Edinburgh’s phrase-based

machine translation systems for WMT-14, in: Proceedings of the ACL 2014

Ninth Workshop on Statistical Machine Translation, Baltimore, MD, USA,

2014, pp. 97–104.

[43] C. Dyer, V. Chahuneau, N. A. Smith, A simple, fast, and effective repa-

rameterization of ibm model 2, in: Proceedings of NAACL’13, 2013.

[44] K. Heafield, KenLM: Faster and Smaller Language Model Queries, in: Pro-

ceedings of the Sixth Workshop on Statistical Machine Translation, Edin-

burgh, Scotland, United Kingdom, 2011, pp. 187–197.

URL http://kheafield.com/professional/avenue/kenlm.pdf

[45] M. Galley, C. D. Manning, A Simple and Effective Hierarchical Phrase

Reordering Model, in: Proceedings of the 2008 Conference on Empirical

37

http://www.aclweb.org/anthology/N16-3003
http://www.aclweb.org/anthology/N16-3003
http://www.aclweb.org/anthology/N16-3003
http://kheafield.com/professional/avenue/kenlm.pdf
http://kheafield.com/professional/avenue/kenlm.pdf
http://www.aclweb.org/anthology/D08-1089
http://www.aclweb.org/anthology/D08-1089

Methods in Natural Language Processing, Honolulu, Hawaii, 2008, pp. 848–

856.

URL http://www.aclweb.org/anthology/D08-1089

[46] N. Durrani, P. Koehn, H. Schmid, A. Fraser, Investigating the usefulness of

generalized word representations in smt, in: Proceedings of COLING 2014,

the 25th International Conference on Computational Linguistics: Technical

Papers, Dublin City University and Association for Computational Linguis-

tics, Dublin, Ireland, 2014, pp. 421–432.

URL http://www.aclweb.org/anthology/C14-1041

[47] N. Durrani, H. Schmid, A. Fraser, P. Koehn, H. Schütze, The Operation

Sequence Model – Combining N-Gram-based and Phrase-based Statistical

Machine Translation, Computational Linguistics 41 (2) (2015) 157–186.

[48] N. Durrani, H. Schmid, A. Fraser, A Joint Sequence Translation Model

with Integrated Reordering, in: Proceedings of the Association for Compu-

tational Linguistics: Human Language Technologies (ACL-HLT’11), Port-

land, OR, USA, 2011.

[49] C. Cherry, G. Foster, Batch tuning strategies for statistical machine trans-

lation, in: Proceedings of the 2012 Annual Conference of the North Amer-

ican Chapter of the Association for Computational Linguistics: Human

Language Technologies, NAACL-HLT ’12, Montréal, Canada, 2012.

[50] N. Durrani, H. Sajjad, H. Hoang, P. Koehn, Integrating an Unsupervised

Transliteration Model into Statistical Machine Translation, in: Proceedings

of the 15th Conference of the European Chapter of the ACL (EACL 2014),

Gothenburg, Sweden, 2014.

[51] K. Duh, S. K. Neubig, Graham, H. Tsukada, Adaptation data selection us-

ing neural language models: Experiments in machine translation, in: Pro-

ceedings of the 51th Annual Meeting of the Association for Computational

Linguistics (Volume 2: Short Papers), Sofia, Bulgaria, 2013.

38

http://www.aclweb.org/anthology/D08-1089
http://www.aclweb.org/anthology/C14-1041
http://www.aclweb.org/anthology/C14-1041
http://www.aclweb.org/anthology/C14-1041

[52] S. Mansour, H. Ney, Phrase training based adaptation for statistical ma-

chine translation, in: Proceedings of the 2013 Conference of the North

American Chapter of the Association for Computational Linguistics: Hu-

man Language Technologies, Atlanta, Georgia, 2013.

[53] H. Sajjad, F. Guzmn, P. Nakov, A. Abdelali, K. Murray, F. A. Obaidli,

S. Vogel, QCRI at IWSLT 2013: Experiments in Arabic-English and

English-Arabic spoken language translation, in: Proceedings of the 10th In-

ternational Workshop on Spoken Language Technology (IWSLT-13), 2013.

[54] A. S. Hildebrand, M. Eck, S. Vogel, A. Waibel, Adaptation of the trans-

lation model for statistical machine translation based on information re-

trieval, in: Proceedings of the 10th Conference of the European Association

for Machine Translation (EAMT), Budapest, 2005.

[55] L. Liu, Y. Hong, H. Liu, X. Wang, J. Yao, Effective selection of transla-

tion model training data, in: Proceedings of the 52nd Annual Meeting of

the Association for Computational Linguistics (Volume 2: Short Papers),

Baltimore, Maryland, 2014.

[56] C. Hoang, K. Sima’an, Latent domain translation models in mix-of-domains

haystack, in: COLING 2014, 25th International Conference on Computa-

tional Linguistics, Proceedings of the Conference: Technical Papers, Au-

gust 23-29, 2014, Dublin, Ireland, 2014.

[57] M. Federico, Efficient language model adaptation through mdi estimation,

in: In Proc. of EUROSPEECH, 1999, pp. 1583–1586.

[58] A. Finch, E. Sumita, Dynamic model interpolation for statistical machine

translation, in: Proceedings of the Third Workshop on Statistical Machine

Translation, Columbus, Ohio, 2008.

[59] P. Nakov, H. T. Ng, Improved statistical machine translation for resource-

poor languages using related resource-rich languages, in: Proceedings of

39

the Conference on Empirical Methods in Natural Language Processing

(EMNLP’09), Singapore, 2009.

[60] G. Foster, R. Kuhn, Stabilizing minimum error rate training, in: Proceed-

ings of the Fourth Workshop on Statistical Machine Translation, StatMT

’09, Athens, Greece, 2009.

[61] B. Chen, R. Kuhn, G. Foster, Vector space model for adaptation in statis-

tical machine translation, in: Proceedings of the 51st Annual Meeting of

the Association for Computational Linguistics (Volume 1: Long Papers),

Sofia, Bulgaria, 2013.

[62] B. Chen, G. Foster, R. Kuhn, Adaptation of reordering models for sta-

tistical machine translation, in: Proceedings of the 2013 Conference of the

North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Atlanta, Georgia, 2013.

[63] Q.-K. DO, A. Allauzen, F. Yvon, A discriminative training procedure for

continuous translation models, in: Proceedings of the 2015 Conference on

Empirical Methods in Natural Language Processing, Association for Com-

putational Linguistics, Lisbon, Portugal, 2015, pp. 1046–1052.

URL http://aclweb.org/anthology/D15-1121

[64] J. Chung, Ç. Gülçehre, K. Cho, Y. Bengio, Empirical evaluation of gated

recurrent neural networks on sequence modeling, Tech. Rep. Arxiv report

1412.3555, Université de Montréal, presented at the Deep Learning work-

shop at NIPS2014 (2014).

40

http://aclweb.org/anthology/D15-1121
http://aclweb.org/anthology/D15-1121
http://aclweb.org/anthology/D15-1121

	Introduction
	Neural Network Joint Model
	Model
	Noise Contrastive Estimation

	Domain Adaptation with Neural Network Joint Model
	Data Selection
	Regularized Neural Adaptation Models
	Adaptation by Regularizing with respect to In-domain
	Adaptation by Regularizing with respect to In- and Out-domains

	Mixture Models
	Interpolation
	Neural Fusion Models

	Technical Details
	Gradient Clipping
	Noise Distribution in Noise Contrastive Estimation
	Dealing with Unknown Words

	Experiments
	Data
	System Settings
	Results
	Intrinsic Evaluation
	Machine Translation Results – Model Adaptation
	Machine Translation Results – Data Selection Methods

	Related Work
	Conclusions and Future Work

