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ABSTRACT

NatiQ is end-to-end text-to-speech system for Arabic. Our
speech synthesizer uses an encoder-decoder architecture with
attention. We used both tacotron-based models (tacotron-1
and tacotron-2) and the faster transformer model for gener-
ating mel-spectrograms from characters. We concatenated
Tacotron1 with the WaveRNN vocoder, Tacotron2 with the
WaveGlow vocoder and ESPnet transformer with the parallel
wavegan vocoder to synthesize waveforms from the spectro-
grams. We used in-house speech data for two voices: 1) neu-
tral male “Hamza”- narrating general content and news, and
2) expressive female “Amina”- narrating children story books
to train our models. Our best systems achieve an average
Mean Opinion Score (MOS) of 4.21 and 4.40 for Amina and
Hamza respectively.The objective evaluation of the systems
using word and character error rate (WER and CER) as well
as the response time measured by real-time factor favored the
end-to-end architecture ESPnet.NatiQ demo is available on-
line at https://tts.qcri.org.

1. INTRODUCTION

Text to speech (TTS) is among the technologies that enables
many solutions across different sectors. In the current pan-
demic time, education system is challenged with the new
norm of distance and remote education. Teachers are not able
to provide needed attention and support for every student;
more precisely for lower elementary schools where students
are very dependent on the teacher’s guidance to follow the
instructions. TTS can elevate some of this burden by allow-
ing the young children to hear the content and have it read to
them in a very fluent and pleasing voice. Advances in Neural
technology allow achieving more natural voice compared to
previous technologies [1].

We present NatiQ, an end-to-end speech system for
Arabic. The system is composed of two independent mod-
ules: i) the web application and ii) the speech synthesizer.
The web application uses React Javascript framework to han-
dle dynamic User Interface and MangoDB to handle session
related information. The system is built upon modern web
technologies, allowing it to run cross-browsers and platforms.

Figure 1 presents a screenshot of the interface.

Our best synthesizer is based on ESPnet Trans-
former TTS [2] architecture that takes input characters in an
encoder-decoder framework to output mel-spectograms. The
intermediate form is then converted into wav form using the
Generative Adversarial Networks vocoder WaveGAN [3, 4].
We explored additional architecture including Tacotron1 [5]
and 2 [6] and for vocoders WaveRNN [7] and WaveGlow [8]
to synthesize waveforms from the decoded mel-spectograms.

We built two in-house speech corpora Amina – a
female speaker with expressive narration and Hamza – a male
speaker with neutral narration. The former is targeted towards
education and the latter is more suitable to broadcast media.

Given that Arabic is typically written with no short
vowels, this required to include additional processing to the
text before exploiting it in the training. In addition to the
short vowels restoration, diacritization, the pre-processing
steps involves segmentation, transcript matching, voice nor-
malization and silence reduction. We will further describe
the pipeline and the architecture in detail. The resulting
systems were evaluated using both objective and subjective
approaches employing automatic metrics such as CER and
WER; and using MOS. Lastely, the systems were assessed
with Real-time Factor to evaluated decoding speed of each
model.

2. SYSTEM ARCHITECTURE

Our NatiQ system is a web-based demonstration that is com-
posed of two main components:

2.1. Web Application

The web application has two major components; the frontend
and the backend. The frontend is created using the React
Javascript framework to handle the dynamic User Interface
(UI) changes such updates in generation. The backend is built
using NodeJS and MongoDB to handle sessions, data associ-
ated with these sessions, communication with models, request
inference and authentication. The frontend presents the user



Fig. 1. NatiQ system in action

Fig. 2. NatiQ Architecture.

with an input text box and choice of speakers to choose from.
Figure 1 shows a screenshot for the frontend. The responses
from the backend will be presented to the user in a wave form
that the user can listen to or download.

2.2. Speech Synthesis

Now we will describe the overall architecture of our synthesis
model. Figure 2 shows the system architecture. The prepro-
cessing module involves converting the numbers, abbrevia-
tions and dates into their vocalized form using linguistic and
custom rules. Next the text is vowelized using Farasa [9],
which diacritize and restore short vowels using the syntactic
structure of the sentence.

The synthesizer is an encoder-decoder model cas-
caded with a vocoder to generate the wave-forms. The former
converts the preprocessed text into a mel-spectrum. The latter
convert the melspectogram representation into a wave form.
Below we describe different components of our model:

2.2.1. Data

We acquired high quality speech data recorded at a sampling
rate of 44kHz from two speakers. A female speaker Amina
was recorded reading selected passages mainly from children
books in Modern Standard Arabic. The data contains 3964
segments and 50,714 words in total. The style for this record-
ing is expressive. The second data Hamza was recorded by
a male speaker and in neutral style. This data contains 6005
segments and 80,409 words in total. Figure 3 shows the seg-
ments length distribution for each of the speakers. For both
of the speakers, the average length of the segments is around
7 seconds or around 12 words per segment.

Fig. 3. Distribution of segments lengths for each speaker

2.2.2. Preprocessing

Data preprocessing steps involve: i) diacritization, ii) speech
transcript matching, iii) segmentation, and iv) vowel normal-
ization and silence reduction.



Diacritization Arabic has two types of vowels;
namely long vowels, which are explicitly written in the text,
and short vowels (aka diacritics) which are typically omitted
in modern writings as native speakers can infer them based
on contextual information. In order to read Arabic words
properly, readers need to restore the missing diacritics and
this is important for machines to pronounce the text correctly.

We diacritized the text using Farasa [9]. Al-
though Farasa gives an accuracy above 94% the automatic
diacritized data was, neverthless, reviewed by a language
expert to ensure the accuracy of the annotations. This is
important as some cases (for example named entities and for-
eign words) are often even challenging for a native speaker
let alone for the automatic system. It’s worth mentioning that
we built a text normalization layer to convert digits, abbrevi-
ations, and special symbols to words to be fully diacritized
by Farasa. Due to Arabic complexity and ambiguity, this
conversion was not trivial in many cases.

Speech Transcript Matching Although native
speakers don’t require short vowels to correctly pronounce
a word, in some rare cases they may make mistake of pro-
nouncing a word with a wrong vowel. Rather than correcting
the speaker which might require going back to the studio and
re-record the segment again, we opted to change the transcript
in such cases to reflect what was spoken. This will save both
time and efforts required from the speaker and the recording
studio.

Segmentation Due to the limitation of neural archi-
tectures to handle long audio samples [6], the data is sampled
into frames of 10 seconds in average. The segmentation has to
consider the sentence boundaries and not to break nor the con-
text or the prosody. In general cases, long silences between
segments is a good indicator but exception were found when
related context or supplemental material that is still consid-
ered a part of the sentence still comes after a long pause.

Text Normalization This includes spelling out
numbers, fractions, abbreviations and titles into their textual
format such as “16.43” to “ �éJÖÏ @ 	áÓ Z 	Qk.
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2.2.3. Models

We trained three models based on Tacotron-1 [5], Tacotron-
2 [6] and Transformer TTS [2] recipes. The choice of these
models was driven mainly by two main goals: Real-time de-
coding and high-quality voice.

1Using Safe Buckwalter Arabic encoding

Model Tacotron1 builds on top of RNN sequence-
to-sequence architecture. It includes an encoder, an attention-
based decoder, and a post-processing module. The former
takes text as characters and generates a mel-spectrogram.
The post-processing module then generates waveform from
the mel-spectogram. Tacotron1 uses a CBHG-based encoder
which consists of a bank of 1-D convolutional filters, followed
by highway networks and a bidirectional gated recurrent unit
(GRU). The decoder is a content-based tanh attention decoder
that generates an 80-band mel-scale spectrogram as the target.
Finally we use WaveRNN [7] on top to generate waveforms
from the generated mel-spectograms. WaveRNN is a single
layered RNN network that generates raw audio samples.

Model Tacotron2 follows the same recipe as
Tacotron1 i.e. RNN-based sequence-to-sequence encoder-
decoder architecture, it consists of a bi-directional LSTM-
based encoder and a unidirectional LSTM-based decoder
with location sensitive attention [10]. Additionally, the mod-
els employs different vocoder to generate waveforms. We
used the WaveGlow [8], a flow-based network capable of
generating high quality speech from melspectograms. Wave-
Glow is a generative model that generates audio by sampling
from zero mean spherical Gaussian distribution. It uses 12
coupling layers and 12 invertible 1× 1 convolutions.

Model ESPnet Transformer TTS Inspired by
Neural Machine Translation, Transformer TTS [2] adapts
multi-head self-attention mechanism and feed forward strat-
egy to build an encoder-decoder model that would convert
a sequence of inputs characters into an output sequence of
acoustic features (log Mel-filter bank features), the model
provide an adventage over the former models in the train-
ing speed as it uses a feed forward network compared to
recurrent network based-models. Similarly to Tacotron1 and
Tacotron2 models, Transformer TTS requires a vocoder to
further convert the Mel features into wave form. We used
Parallel WaveGAN [4] a non-autoregressive WaveNet that
uses generative adversarial network to convert the Mel-filter
bank sequences to a waveform.

3. EVALUATION

To evaluate the performance of each of the models, We built
an evaluation test set composed of 100 sentences of vary-
ing lengths, collected from six domains including: Culture,
Economy, Literature, Politics, Sports, and Technology. The
sentences were collected between Jan 1st to Jan 20th, 2022.
They include excerpts from current topics and news. We de-
coded each sentence using the three models and for each of
the voices. This resulted in a pool of 600 audio files to evalu-
ate. We carried automatic and manual (subjective) evaluations
described below:



3.1. Automatic Evaluation

We used state-of-the-art Arabic ASR system [11] to decode
the audio files generated by our TTS models. The ASR sys-
tem gives state of the art performance on a number of stan-
dard data sets such as MGB-3 [12] and MGB-5 [13]. We
then compare the generated transcripts against the input sen-
tences for which TTS outputs are generated. As the ASR sys-
tem generates unvowelized text, we strip short vowels from
the reference original text to allow a fair comparison. We
used standard evaluation metrics Word Error Rate (WER) and
Charecter Error Rate (CER). Table 1 shows the results using
the automatic approach. The system built using ESPnet2 gave
the lowest WER and CER. Additionally, the neutral voice
“Hamza” achieved a lower error rate when compared to the
expressive “Amina”. This highlights the challenges dealing
with non-monotonic voices which are typically richer and has
more features that the network needs to capture [14]. For Am-
ina, Tacotron1 results are not worse than the leading ESPnet2
system; which potentially means that Tacotron1 is better at
handling richer features. Tacotron2 suffers more from dele-
tion, and substitution errors, this is the main cause for the
CER/WER to be higher than other models.

3.2. Qualitative Evaluation

We recruited 14 individuals (7 females and 7 males) to carry
the manual subjective evaluation. The participants were in-
structed to listen to the audio and give their opinion on the
speech quality using a scale from 1 to 5; The five-category
MOS scale [15]: 5 = excellent, 4 = good, 3 = fair, 2 = poor,
1 = bad. Each participants was presented with a set of 15
random samples from the pool. The overall results presented
in Table 2 shows that the participants favored ESPNet:Hamza
and Tacotron1:Amina. The results of ESPNet:Hamza are very
comparable to the Tacotron1:Hamza. The results also shows
that participants preferred the neutral voice over expressive
one. Literature also reports that typically evaluators prefer
neutral over expressive and expressivity is better perceived
when the samples have a high quality [16]. The qualita-
tive results are closely aligned with automatic evaluation,
the differences in CER/WER between ESPNet:Amina and
Tacotron1:Amina are less pronounced when compared to
Hamza.

3.3. Speed

Lastly, another metric to evaluate the system, we used Real-
time Factor (RTF): the ratio of the speech generation time to
the utterance duration. Such measure is very crucial and es-
sential in the deployment of any system, especially for real-
time use. For a system to be considered real-time, RTF should
be <= 1 [17]. Having a low RTF, will ensure that the sys-
tem latency is reasonable and acceptable and indicate that the
system can be used in real-time applications. Table 3 shows

Amina Hamza
CER WER CER WER

ESPnet2 17.47 40.42 8.01 24.87
Tacotron1 22.51 43.98 27.48 46.12
Tacotron2 40.76 64.80 82.38 93.62

Table 1. CER and WER evaluation results for the three sys-
tems.

Amina Hamza
ESPnet2 3.57 4.40
Tacotron1 4.21 4.38
Tacotron2 3.49 2.34

Table 2. MOS evaluation results for the three systems.

the average RTF for the three systems running on a 4 Cores
Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz and 32Gb
of RAM and powered by NVIDIA Tesla V100 SXM2 32Gb
GPU. The end-to-end ESPnet2 system, is the clear winner
with a an RTF equal to 0.09 which is 1.5 and 17 times faster
than Tacotron2 and Tacotron1 respectively. None of the sys-
tems run real-time on CPU. Our fastest system ESPnet2 runs
at a speed of 4.24xRT on CPU.

RTF
Model GPU CPU
ESPnet2 0.09 4.24
Tacotron1 1.66 -
Tacotron2 0.14 -

Table 3. Realtime Factor evaluation results.

4. CONCLUSION

We presented NatiQ Arabic text-to-speech system, a system
based on end-to-end framework that combines Transformer
encoder-decoder and WaveGAN vocoder. The system was
evaluated using subjective metric, Mean Opinion Score and
objective Speed, WER and CER. The system achieved a MOS
of 4.35 and 4.72 for Amina and Hamza respectively. Such
performance is very comparable to English systems [5, 6] .
For the expressive speaker, the performance of the system
still lags behind the neutral one. This is due to the complex
and rich features encoded in expressive voice. We plan to ex-
plore different techniques that exploits the additional features
in the voice such as [18] which aim to combine frames and
style information as two objective functions to optimize while
training the model.
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