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Introduction

• A model that

– combines benefits from Phrase-based and N-gram-based SMT

– is based on minimal translation but memorizes like phrases

– considers source and target contextual information across phrases

– integrates translation and reordering into a single model

• Convert a bilingual sentence to a sequence of operations

– Translate (Generate a minimal translation unit)

– Reordering (Insert a gap or Jump)

• P(e,f,a) = N-gram model over resulting operation sequences 
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Sie würden gegen Sie stimmen

They would vote against you

Operations

o1 Generate (Sie, They)

o2 Generate (würden, would)

o3 Insert Gap

o4 Generate (stimmen, vote) 

o5 Jump Back (1)

o6 Generate (gegen, against)

o7 Generate (Sie, you)
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Example

Sie würden stimmen

They     would                       vote

o1 o2 o3 o4

Context Window

Model:

posm(F,E,A) = p(o1,...,oN) = ∏i p(oi|oi-n+1...oi-1)



• Overcomes phrasal independence assumption

– Considers source and target contextual information across phrases 

• Better reordering model

– Translation and reordering decisions influence each

– Handles local and long distance reorderings in a unified manner

• No spurious phrasal segmentation problem

• Average gain of +0.40 on news-test2013 across 10 pairs

Thank You !!!
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How does it improve Phrase-based SMT?
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Using Word Clusters

lti

lti June 26, 2014

C10010111 C00100001 C11111

Common prefixes, 
Common context

1. Cluster monolingual data 
2. 500-1000 clusters 
3. Use for: LMs, features 



Using Word Clusters

lti

lti June 26, 2014

C10010111 C00100001 C11111

Rule “shape” features

BLEU MET TER

Baseline 25.3 30.4 52.6

+Rule shape 25.5 30.5 52.4

+7gm LM 26.4 31.0 51.9

X→(dass X angekommen ist, that X arrived) 
C1001_X_C001101_C110100::C010111_X_C111111=1

7-gram class-based LM
Absolute discounting (d=0.5) 
Separate features for transitions and emissions

(prefix length = 6)
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Large-scale Discriminative Tuning

#1: 2010s ML in MT tuning

Online convex optimization

Arbitrary, overlapping features

#2: Large tuning sets

Fast decoding and updating

Bitext tuning...

See our poster and talk for details
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WMT14 Shared Task Results

Uncased BLEU results

dense–dev features–dev 2014 rank

Fr–En 19.6 20.0 1

En–De 32.0 32.5 1

Tune: 13.5k sentences (2008–2012)

Models have 200–300k features
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Impact of Big Language Models

Target Base Rank +LM Rank ∆BLEU
Czech 5–6 → 1–3 +0.6

Hindi 4–5 → 3 +1.4

Russian 6–7 → 4–5 +1.2

German 8–10 → 3–6 +0.5

After the evaluation: Hindi–English +0.9 BLEU



Download multiple LMs and training data from

statmt.org/ngrams

English: 1.8 trillion tokens
n Unique n-grams

1 2,640,258,088

2 15,297,753,348

3 61,858,786,129

4 156,775,272,110

5 263,690,452,834

Current work: approximate LM storage.
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Consistent Phrase Training

State of the art

I Heuristic extraction of phrases using word alignments

I Compute translation probabilities as relative frequencies

Issues of this heuristic

I Extract from likely alignment?

I Models used in decoding are not considered⇒ inconsistency

Forced decoding

I Run decoder on training data

I Count used phrases, recompute probabilities

I Apply leave-one-out to counteract overfitting

S. Peitz Phrase Training 2 June 26th, 2014



Leave-One-Out

I Occurrences of a phrase in a sentence pair (fn, en) are subtracted from the
phrase counts obtained from the full training data

pl1o,n(f̃ |ẽ) =
C(f̃ , ẽ)− Cn(f̃ , ẽ)∑
f̃ ′C(f̃ ′, ẽ)− Cn(f̃ ′, ẽ)

I Singleton phrases get a low probability

S. Peitz Phrase Training 3 June 26th, 2014



Consistent Phrase Training using Leave-One-Out

I Publications

. Phrase-based [Wuebker & Mauser+ 10, Wuebker & Ney 13]

. Hierarchical [Peitz & Mauser+ 12, Peitz & Vilar+ 14]

I Improvements: 0.5-1.5 BLEU

I Reducing phrase-table size to 5-20% of the original size

I Systems using phrase/rule training:

. WMT 2011 (RWTH, German→English, phrase-based)

. IWSLT 2011 (RWTH, German→English, phrase-based)

. IWSLT 2012 (RWTH, German→English, hierarchical)

. BOLT 2012 (RWTH, Chinese→English, hierarchical)

. OpenMT 2012 (NRC, Chinese→English, phrase-based)

I Implemented in RWTH’s translation toolkit Jane
http://www.hltpr.rwth-aachen.de/jane

S. Peitz Phrase Training 4 June 26th, 2014
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uedin-syntax: string-to-tree

TOP

S-TOP

NP-SB

NP-AGART NN

das Protokoll ART ADJA NN

der letzten Sitzung

VAFIN

wurde VVPP

verteilt

VP-OC

PUNC.

.

the minutes of havesitting distributedbeen'syesterday .

TOP → the X1 X2 have been X3 X4 | das NN1 NP-AG2 wurde VP-OC3 PUNC.4



uedin-syntax: string-to-tree extensions
Use syntactic structure to help model other aspects of target-side
grammar.

Example 1. Agreement

TOP → the X1 X2 have been X3 X4 | das NN1 NP-AG2 wurde VP-OC3 PUNC.4
〈NN1 AGR〉 = 〈wurde AGR〉

Example 2. Compound Splitting
NN

SEGMENT

gericht

COMP

JUNC

@s@

SEGMENT

berufung

COMP

JUNC

@es@

SEGMENT

Bund

Best constrained system for:

English-German
German-English
Hindi-English (tied with CMU)
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