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(Moses and Phrasal) and N-gram-based systems (Ncode) on standard translation tasks. We
compare the reordering component of the OSM model to the Moses lexical reordering model,
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1. Introduction

Statistical Machine Translation (SMT) advanced near the beginning of the century from
word-based models (Brown et al. 1993) towards more advanced models that take con-
textual information into account. Phrase-based (Koehn et al. 2003; Och and Ney 2004)
and N-gram-based (Casacuberta and Vidal 2004; Mariño et al. 2006) models are two
instances of such frameworks. While the two models have some common properties,
they are substantially different. The present work is a step towards combining the
benefits and remedying the flaws of these two frameworks.

Phrase-based systems have a simple but effective mechanism that learns larger
chunks of translation called bilingual phrases.1 Memorizing larger units enables the
phrase-based model to learn local dependencies such as short-distance reorderings,
idiomatic collocations, insertions and deletions, that are internal to the phrase pair. The
model, however, has the following drawbacks: i) it makes independence assumptions
over phrases ignoring the contextual information outside of phrases, ii) the reordering
model has difficulties to deal with long range reorderings, iii) problems in both search
and modeling require the use of a hard reordering limit, and iv) it has the spurious
phrasal segmentation problem which allows multiple derivations of a bilingual sen-
tence pair which have the same word alignment but different model scores.

N-gram-based models are Markov models over sequences of tuples that are gen-
erated monotonically. Tuples are minimal translation units (MTUs) composed of source
and target cepts.2 The N-gram-based model has the following drawbacks: i) only pre-
calculated orderings are hypothesized during decoding, ii) it cannot memorize and use
lexical reordering triggers, iii) it cannot perform long distance reorderings, and iv) using
tuples presents a more difficult search problem than in phrase-based SMT.

The Operation Sequence Model In this paper we present a novel model that
tightly integrates translation and reordering into a single generative process. Our model
explains the translation process as a linear sequence of operations which generates a
source and target sentence in parallel, in a target left-to-right order. Possible operations
are (i) generation of a sequence of source and target words (ii) insertion of gaps as
explicit target positions for reordering operations, and (iii) forward and backward jump
operations which do the actual reordering. The probability of a sequence of operations is
defined according to an N-gram model, i.e., the probability of an operation depends on
the n− 1 preceding operations. Since the translation (lexical generation) and reorder-
ing operations are coupled in a single generative story, the reordering decisions may
depend on preceding translation decisions and translation decisions may depend on
preceding reordering decisions. This provides a natural reordering mechanism which is
able to deal with local and long-distance reorderings in a consistent way.

Like the N-gram-based SMT model, the operation sequence model (OSM) is based
on minimal translation units and takes both source and target information into ac-
count. This mechanism has several useful properties. Firstly, no phrasal independence
assumption is made. The model has access to both source and target context outside
of phrases. Secondly the model learns a unique derivation of a bilingual sentence
given its alignments, thus avoiding the spurious phrasal segmentation problem. The

1 A Phrase pair in phrase-based SMT is a pair of sequences of words. The sequences are not necessarily
linguistic constituent. Phrase pairs are built by combining minimal translation units and ordering
information. As is customary we use the term "phrase" to refer to phrase pairs if there is no ambiguity.

2 A cept is a group of source (or target) words connected to a group of target (or source) words in a
particular alignment (Brown et al. 1993).
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OSM model, however, uses operation N-grams (rather than tuple N-grams), which
encapsulate both translation and reordering information. This allows the OSM model
to use lexical triggers for reordering like phrase-based SMT. Our reordering approach
is entirely different than in the tuple N-gram model. We consider all possible orderings
instead of a small set of POS-based pre-calculated orderings, as is used in N-gram-based
SMT which makes their approach dependent on the availability of a source and target
POS-tagger. We show that despite using POS tags the reordering patterns learned by
N-gram-based SMT are not as general as those learned by our model.

Combining MTU-model with Phrase-based Decoding Using minimal translation
units makes the search much more difficult because of the i) poor translation coverage,
ii) inaccurate future cost estimates and iii) pruning of correct hypotheses due to insuffi-
cient context. The ability to memorize and produce larger translation units gives an edge
to the phrase-based systems during decoding, in terms of better search performance
and superior selection of translation units. In this paper we combine N-gram-based
modeling with phrase-based decoding to benefit from both approaches. Our model
is based on minimal translation units, but we use phrases during decoding. Through
an extensive evaluation we found that this combination not only improves the search
accuracy but also the BLEU scores. Our in-house phrase-based decoder outperformed
state-of-the-art phrase-based (Moses and Phrasal) and N-gram-based (NCode) systems
on three translation tasks.

Comparative Experiments Motivated by these results, we integrated the OSM
model into the state-of-the-art phrase-based system Moses (Koehn et al. 2007). Our
aim was to directly compare the performance of the lexicalized reordering model to
the OSM model and to see whether we can improve the performance further by using
both models together. Our integration of the OSM model into Moses gave a statistically
significant improvement over a competitive baseline system in most cases.

In order to assess the contribution of improved reordering versus the contribution
of better modeling with MTUs in the OSM-augmented Moses system, we removed the
reordering operations from the stream of operations. This is equivalent to integrating
the conventional N-gram tuple sequence model (Mariño et al. 2006) into a phrase-based
decoder as also tried by Niehues et al. (2011). Small gains were observed in most cases,
showing that much of the improvement obtained by the OSM model is due to better
reordering.

Generalized Operation Sequence Model The primary strength of the OSM model
over the lexicalized reordering model is its ability to take advantage of the wider
contextual information. In an error analysis we found that the lexically-driven OSM
model often falls back to very small context sizes due to data sparsity. We show that this
problem can be addressed by learning operation sequences over generalized represen-
tations such as POS tags.

The article is organized into seven sections. Sections 2 is devoted to a literature
review. We discuss the pros and cons of the phrase-based and N-gram-based SMT
frameworks in terms of both model and search. Section 3 presents our model. We
show how our model combines the benefits of both of the frameworks and removes
their drawbacks. Section 4 provides an empirical evaluation of our preliminary sys-
tem, which uses mtu-based decoder, against state-of-the-art phrase-based (Moses and
Phrasal) and N-gram-based (Ncode) systems on 3 standard tasks of translating German-
to-English, Spanish-to-English and French-to-English. Our results show improvements
over the baseline systems, but we noticed that using minimal translation units during
decoding makes the search problem difficult, which suggests using larger units in
search. Section 5 presents an extension to our system to combine phrase-based de-
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coding with the operation sequence model to address the problems in search. Section
5.1 empirically shows that information available in phrases can be used to improve
the search performance and translation quality. Finally we probe whether integrating
our model into the phrase-based SMT framework addresses the mentioned drawbacks
and improves translation quality. Section 6 provides an empirical evaluation of our
integration on 6 standard tasks of translating German-English, French-English and
Spanish-English pairs. Our integration gives statistically significant improvements over
submission quality baseline systems. Section 7 concludes the paper.

2. Previous Work

2.1 Phrase-based SMT

The phrase-based model (Koehn et al. 2003; Och and Ney 2004) segments a bilingual
sentence pair into phrases that are continuous sequences of words. These phrases
are then reordered through a lexicalized reordering model that takes into account the
orientation of a phrase with respect to its previous phrase (Tillmann and Zhang 2005)
or block of phrases (Galley and Manning 2008). Phrase-based models memorize local
dependencies such as short reorderings, translations of idioms, and the insertion and
deletion of words sensitive to local context. Phrase-based systems, however, have the
following drawbacks.

Handling of Non-local Dependencies. Phrase-based SMT models dependencies be-
tween words and their translations inside of a phrase well. However, dependencies
across phrase boundaries are ignored due to the strong phrasal independence assump-
tion. Consider the bilingual sentence pair shown in Figure 1 (a).

Figure 1
(a) Training Example with Learned Phrases (b) Test Sentence

Reordering of the German word "stimmen" is internal to the phrase-pair "gegen
ihre Kampagne stimmen – vote against your campaign" and therefore represented by
the translation model. However, the model fails to correctly translate the test sentence
shown in Figure 1 (b), which is translated as "they would for the legalization of abortion
in Canada vote", failing to displace the verb. The language model does not provide
enough evidence to counter the dispreference of the translation model against jumping
over the source words "für die Legalisieurung der Abtreibung in Kanada" and translat-
ing "stimmen – vote" at its correct position.

Weak Reordering Model. The lexicalized reordering model is primarily designed to
deal with short-distance movement of phrases such as swapping two adjacent phrases
and cannot properly handle long range jumps. The model only learns an orientation
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of how a phrase was reordered with respect to its previous and next phrase, and
makes independence assumptions over previously translated phrases and does not
take into account how previous words were translated and reordered. While such an
independence assumption is useful to reduce sparsity, it is overly generalizing and does
not help to disambiguate good reorderings from the bad ones.

Moreover, a vast majority of extracted phrases are singletons and the corresponding
P(o|pp) (probability of orientation given phrase-pair) estimates are based on a single
observation. Due to sparsity the model falls back to use one-word phrases instead,
orientation of which is ambiguous and can only be judged based on context which is
ignored. This drawback has been addressed by Cherry (2013) by using sparse features
for reordering models.

Hard Distortion Limit. The lexicalized reordering model fails to filter out bad large-
scale reorderings effectively (Koehn 2010). A hard distortion limit is therefore required
during decoding in order to produce good translations. A distortion limit beyond 8
words lets the translation accuracy drop because of search errors (Koehn et al. 2005). The
use of a hard limit is undesirable for German-English and similar language pairs with
significantly different syntactic structures. Several researchers have tried to address
this problem. Moore and Quirk (2007) proposed improved future cost estimation to
enable higher distortion limits in phrasal MT. Green et al. (2010) additionally proposed
discriminative distortion models to achieve better translation accuracy than the baseline
phrase-based system for a distortion limit of 15 words. Bisazza and Federico (2013)
recently proposed a novel method to dynamically select which long range reorderings
to consider during the hypothesis extension process in a phrase-based decoder and
showed an improvement in a German-English task by increasing the distortion limit
to 18.

Spurious Phrasal Segmentation. A problem with the phrase-based model is that there
is no unique correct phrasal segmentation of a sentence. Therefore all possible ways of
segmenting a bilingual sentence consistent with the word alignment are learned and
used. This leads to two problems: i) phrase frequencies are obtained by counting all
possible occurrences in the training corpus, and ii) different segmentations producing
the same translation are generated during decoding. The former leads to questionable
parameter estimates and the latter may lead to search errors because the probability of
a translation is fragmented across different segmentations. Furthermore the diversity in
n-best translation lists is reduced.

2.2 N-gram-based SMT

N-gram-based SMT (Mariño et al. 2006) uses an N-gram model which jointly generates
the source and target strings as a sequence of bilingual translation units called tuples.
Tuples are essentially minimal phrases, atomic units that cannot be decomposed any
further. The tuples are generated left to right in target word order. Reordering is not
part of the statistical model. The parameters of the N-gram model are learned from
bilingual data where the tuples have been arranged in target word order (see Figure 2).

Decoders for N-gram-based SMT reorder the source words in a preprocessing step
so that the translation can be done monotonically. The reordering is performed with
POS-based rewrite rules (see Figure 2 for an example) which have been learned from the
training data (Crego and Mariño 2006). Word lattices are used to compactly represent a
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number of alternative reorderings. Using parts of speech instead of words in the rewrite
rules makes them more general and helps to avoid data sparsity problems.

Figure 2
POS-based Reordering in N-gram-based SMT – Learned Rules

The mechanism has several useful properties: i) Because it is based on minimal
units, there is only one derivation for each aligned bilingual sentence pair. The model
therefore avoids spurious ambiguity. ii) The model makes no phrasal independence
assumption and generates a tuple monotonically by looking at a context of n previous
tuples, thus capturing context across phrasal boundaries. On the other hand, N-gram-
based systems have the following drawbacks.

Weak Reordering Model. The main drawback of N-gram-based SMT is its poor re-
ordering mechanism. Firstly, by linearizing the source, N-gram-based SMT throws
away useful information about how a particular word is reordered with respect to the
previous word. This information is instead stored in the form of rewrite rules which
have no influence on the translation score. The model does not learn lexical reordering
triggers and reorders through the learned rules only. Secondly, search is performed only
on the pre-calculated word permutations created based on the source-side words. Often
evidence of the correct reordering is available in the translation model and the target-
side language model. All potential reorderings that are not supported by the rewrite
rules are pruned in the pre-processing step. To demonstrate this, consider the bilingual
sentence pair in Figure 2 again. N-gram-based MT will linearize the word sequence
"gegen ihre Kampagne stimmen" to "stimmen gegen ihre Kampagne", so that it is in the
same order as the English words. At the same time it learns a POS rule "IN PRP NN VB
→VB IN PRP NN". The POS-based rewrite rules serve to precompute the orderings that
will be hypothesized during decoding. However, notice that this rule cannot generalize
to the test sentence in Figure 1 (b) even though the tuple translation model learned the
trigram < "sie – they" "würden – would" "stimmen – vote" > and it is likely that the
monolingual language model has seen the trigram "they would vote".

Hard Reordering Limit. Due to sparsity, only rules with 7 or less tags are extracted.
This subsequently constrains the reordering window to 7 or less words preventing the
N-gram model from hypothesizing long range reorderings which require larger jumps.
The need to perform long distance reordering motivated the idea of using syntax trees
(Crego and Mariño 2007) to form rewrite rules. However, the rules are still extracted
ignoring the target-side and search is performed only on the pre-calculated orderings.

Difficult Search Problem. Using minimal translation units makes the search problem
much more difficult because of poor translation option selection. To illustrate this
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consider the phrase pair "schoss ein Tor – scored a goal", consisting of units "schoss
– scored", "ein – a" and "Tor – goal". It is likely that the N-gram system does not have
the tuple "schoss – scored" in its n-best translation options because it is an uncommon
translation. Even if "schoss – scored" is hypothesized, it will be ranked quite low in
the stack and may be pruned, before "ein" and "Tor" are generated in the next steps. A
similar problem is also reported in Costa-jussà et al. (2007): When trying to reproduce
the sentences in the n-best translation output of the phrase-based system, the N-gram-
based system was able to produce only 37.5% of sentences in the Spanish-to-English
and English-to-Spanish translation task despite having been trained on the same word
alignment. A phrase-based system on the other hand is likely to have access to the
phrasal unit "schoss ein Tor – scored a goal" and can generate it in a single step.

3. Operation Sequence Model

Now we present a novel generative model that explains the translation process as a
linear sequence of operations which generate a source and target sentence in parallel.
Possible operations are (i) generation of a sequence of source and/or target words (ii)
insertion of gaps as explicit target positions for reordering operations, and (iii) forward
and backward jump operations which do the actual reordering. The probability of a
sequence of operations is defined according to an N-gram model, i.e., the probability of
an operation depends on the n− 1 preceding operations. Since the translation (genera-
tion) and reordering operations are coupled in a single generative story, the reordering
decisions may depend on preceding translation decisions, and translation decisions
may depend on preceding reordering decisions. This provides a natural reordering
mechanism which is able to deal with local and long-distance reorderings consistently.

3.1 Generative Story

The generative story of the model is motivated by the complex reordering in the
German-to-English translation task. The English words are generated in linear order,3

while the German words are generated in parallel with their English translations.
Mostly the generation is done monotonically. Occasionally the translator inserts a gap
on the German side to skip some words to be generated later. Each inserted gap acts as
a designated landing site for the translator to jump back to. When the translator needs
to cover the skipped words, it jumps back to one of the open gaps. After this is done,
the translator jumps forward again and continues the translation. We will now, step by
step, present the characteristics of the new model by means of examples.

3.1.1 Basic Operations. The generation of the German-English sentence pair "Peter liest
– Peter reads" is straightforward because it is a simple 1-to-1 word-based translation
without reordering:

Generate (Peter , Peter) Generate (liest , reads)

3 Generating the English words in order is also what the decoder does when translating from German to
English.
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3.1.2 Insertions and Deletions. The translation "Es ist ja nicht so schlimm – it is not
that bad", requires the insertion of an additional German word "ja" which is used as a
discourse particle in this construction.

Generate (Es , it) Generate (ist , is) Generate Source Only (ja) Generate (nicht , not)
Generate (so , that) Generate (schlimm , bad)

Conversely, the translation "Lies mit – Read with me" requires the deletion of an untrans-
lated English word "me".

Generate (Lies , Read) Generate (mit , with) Generate Target Only (me)

3.1.3 Reordering. Let us now turn to an example which requires reordering, and revisit
the example in Figure 1(a). The generation of this sentence in our model starts with
generating "sie – they", followed by the generation of "würden – would". Then a gap is
inserted on the German side, followed by the generation of "stimmen – vote". At this
point, the (partial) German and English sentences look as follows:

Operation Sequence Generation

Generate(sie, they) Generate (würden, would) sie würden stimmen ↓
Insert Gap Generate(stimmen, vote)

they would vote

The arrow sign ↓ denotes the position after the previously covered German word. The
translation proceeds as follow. We jump back to the open gap on the German side and
fill it by generating "gegen – against", "Ihre – your" and "Kampagne – campaign". Let us
discuss some useful properties of this mechanism:

1. We have learned a reordering pattern "sie würden stimmen – they would vote",
which can be used to generalize the test sentence in Figure 1(b). In this case the translator
jumps back and generates the tuples "für – for", " die – the", "Legalisierung – legaliza-
tion", "der – of", "Abtreibung – abortion", "in – in", "Kanada – Canada".

2. The model handles both local (Figure 1 (a)) and long range reorderings (Figure 1 (b)),
in a unified manner, regardless of how many words separate "würden" and "stimmen".

3. Learning the operation sequence Generate(sie, they) Generate(würden, would) Insert Gap
Generate(stimmen, vote) is like learning a phrase pair "sie würden X stimmen – they
would vote". The open gap represented by acts as a placeholders for the skipped
phrases and serves a similar purpose as the non-terminal category X in a discontinuous
phrase-based system.

4. The model couples lexical generation and reordering information. Translation deci-
sions are triggered by reordering decisions and vice versa. Notice how the reordering
decision is triggered by the translation decision in the example. The probability of a gap
insertion operation after the generation of the auxiliaries "würden – would" will be high
because reordering is necessary in order to move the second part of the German verb
complex ("stimmen") to its correct position at the end of the clause.
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Figure 3
Recursive Reordering

Complex reorderings can be achieved by inserting multiple gaps and/or recursively
inserting a gap within a gap. Consider the generation of the example in Figure 3
(borrowed from Chiang (2007)). The generation of this bilingual sentence pair proceeds
as follows:

Generate(Aozhou, Australia) Generate(shi, is) Insert Gap Generate(zhiyi, one of)

At this point, the (partial) Chinese and English sentences look like this:

Aozhou shi zhiyi ↓

Australia is one of

The translator now jumps back and recursively inserts a gap inside of the gap before
continuing translation:

Jump Back (1) Insert Gap Generate(shaoshu, the few) Generate(guojia, countries)

Aozhou shi shaoshu guojia ↓ zhiyi

Australia is one of the few countries

The rest of the sentence pair is generated as follows:

Jump Back (1) Insert Gap Generate(de, that) Jump Back (1) Insert Gap Generate(you,
have) Generate(bangjiao, diplomatic relationships) Jump Back (1) Generate(yu, with) Gen-
erate(Beihan, North Korea)

Note that the translator jumps back and opens new gaps recursively to exhibit a prop-
erty similar to the hierarchical model. However, our model uses a deterministic algo-
rithm (see Algorithm 1) to convert each bilingual sentence pair given the alignment to
a unique derivation, thus avoiding spurious ambiguity unlike hierarchical and phrase-
based models.

Multiple gaps can simultaneously exist at any time during generation. The translator
decides based on the next English word to be covered which open gap to jump to.
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Figure 4
Sub-ordinate German-English Clause Pair

Figure 4 shows a German-English subordinate clause pair. The generation of this
example is carried out as follows:

Insert Gap Generate(nicht, do not) Insert Gap Generate(wollen, want to)

At this point, the (partial) German and English sentences look as follows:

nicht wollen ↓

do not want to

The inserted gaps act as placeholders for the skipped prepositional phrase "über
konkrete Zahlen – on specific figures" and the verb phrase "verhandeln – negotiate".
When the translator decides to generate any of the skipped words it jumps back to
one of the open gaps. The Jump Back operation closes the gap that it jumps to. The
translator proceeds monotonically from that point until it needs to jump again. The
generation proceeds as follows:

Jump Back (1) Generate(verhandeln, negotiate)

nicht verhandeln ↓wollen

do not want to negotiate

The translation ends by jumping back to the open gap and generating the prepositional
phrase as follows:

Jump Back (1) Generate(über, on) Generate(konkrete, specific) Generate(Zahlen, figures)

5. Notice that although our model is based on minimal units we can nevertheless
memorize phrases (along with reordering information) through operation sub-
sequences that are memorized by learning an N-gram model over these operation
sequences. Some interesting phrases that our model learns are:

Phrases Operation Sub-sequence
nicht X wollen – do not want to Generate (nicht , do not) Insert Gap

Generate (wollen , want to)

verhandeln wollen – want to negotiate Insert Gap Generate (wollen , want to)
Jump Back(1) Generate (verhandeln , negotiate)

10
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"X" represents , the Insert Gap operation on the German-side in our notation.

3.1.4 Generation of Discontinuous Source Units. Now we discuss how discontinuous
source cepts can be represented in our generative model. The Insert Gap operation
discussed in the previous section, can also be used to generate discontinuous source
cepts. The generation of any such cept is done in several steps. See the example in Figure
5. The gappy cept "hat...gelesen – read" can be generated as shown below.

Figure 5
Discontinuous German-side Cept

Operation Sequence Generation

Generate(er, he) Generate (hat gelesen, read) er hat gelesen ↓
Insert Gap Continue Source Cept

he read

After the generation of "er – he", the first part of the German complex verb "hat" is
generated as an incomplete translation of "read". The second part "gelesen" is added to
a queue to be generated later. A gap is then inserted for the skipped words "ein" and
"Buch". Lastly the second word ("gelesen") of the unfinished German cept "hat...gelesen"
is added to complete the translation of "read" through a Continue Source Cept opera-
tion. Discontinuous cepts on the English-side cannot be generated analogously because
of the fundamental assumption of the model that English (target-side) will be generated
from left-to-right. This is a shortcoming of our approach which we will discuss later in
Section 4.1.

3.2 Definition of Operations

Our model uses five translation and three reordering operations which are repeatedly
applied in a sequence. The following is a definition of each of these operations.

Generate (X,Y): X and Y are German and English cepts respectively, each with one
or more words. Words in X (German) may be consecutive or discontinuous, but the
words in Y (English) must be consecutive. This operation causes the words in Y and the
first word in X to be added to the English and German strings respectively, that were
generated so far. Subsequent words in X are added to a queue to be generated later.
All the English words in Y are generated immediately because English (target-side) is
generated in linear order as per the assumption of the model.4 The generation of the
second (and subsequent) German words in a multi-word cept can be delayed by gaps,

4 Note that when we are translating in the opposite direction i.e. English-to-German then German becomes
target-side and is generated monotonically and gaps and jumps are performed on English (now
source-side).
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jumps and other operations defined below.

Continue Source Cept: The German words added to the queue by the Generate (X,Y)
operation are generated by the Continue Source Cept operation. Each Continue Source
Cept operation removes one German word from the queue and copies it to the German
string. If X contains more than one German word, say n many, then it requires n
translation operations, an initial Generate (X1...Xn, Y ) operation and n− 1 Continue
Source Cept operations. For example "kehrten...zurück – returned" is generated by the
operation Generate (kehrten zurück, returned), which adds "kehrten" and "returned"
to the German and English strings and "zurück" to a queue. A Continue Source Cept
operation later removes "zurück" from the queue and adds it to the German string.

Generate Source Only (X): The words in X are added at the current position in
the German string. This operation is used to generate a German word with no
corresponding English word. It is performed immediately after its preceding German
word is covered. This is because there is no evidence on the English-side which
indicates when to generate X.5 Generate Source Only (X) helps us learn a source word
deletion model. It is used during decoding, where a German word X is either translated
to some English word(s) by a Generate (X,Y) operation or deleted with a Generate
Source Only (X) operation.

Generate Target Only (Y): The words in Y are added at the current position in
the English string. This operation is used to generate an English word with no
corresponding German word. We do not utilize this operation in MTU-based decoding
where it is hard to predict when to add unaligned target words, during decoding. We
therefore modified the alignments to remove this, by aligning unaligned target words
(see Section 4.1 for details). In phrase-based decoding, however, this is not necessary, as
we can easily predict unaligned target words where they are present in a phrase pair.

Generate Identical: The same word is added at the current position in both the German
and English strings. The Generate Identical operation is used during decoding for
the translation of unknown words. The probability of this operation is estimated from
singleton German words that are translated to an identical string. For example, for
a tuple "QCRI – QCRI", where German "QCRI" was observed exactly once during
training, we use a Generate Identical operation rather than Generate (QCRI, QCRI).

Reordering Operations:. We now discuss the set of reordering operations used by the
generative story. Reordering has to be performed whenever the German word to be
generated next does not immediately follow the previously generated German word.
During the generation process, the translator maintains an index which specifies the
position after the previously covered German word (j), an index (Z) which specifies
the index after the right-most German word covered so far, and an index of the next
German word to be covered (j′). The set of reordering operations used in generation

5 We want to preserve a 1-to-1 relationship between operation sequences and aligned sentence pairs. If we
allowed an unaligned source word to be generated at any time, we would obtain several operation
sequences which produce the same aligned sentence pair.
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Figure 6
Discontinuous Cept Translation

depends upon these indexes. Please refer to Algorithm 1 for details.

Insert Gap: This operation inserts a gap which acts as a placeholder for the skipped
words. There can be more than one open gap at a time.

Jump Back (W): This operation lets the translator jump back to an open gap. It takes a
parameter W specifying which gap to jump to. The Jump Back (1) operation jumps to
the closest gap to Z, Jump Back (2) jumps to the second closest gap to Z, etc. After the
backward jump the target gap is closed.

Jump Forward: This operation makes the translator jump to Z. It is performed when
the next German word to be generated is to the right of the last German word generated
and does not follow it immediately. It will be followed by an Insert Gap or Jump Back
(W) operation if the next source word is not at position Z.

3.3 Conversion Algorithm

We use Algorithm 1 to convert an aligned bilingual sentence pair to a sequence of
operations. Table 1 shows step by step by means of an example how the conversion
is done. The values of the index variables are displayed at each point.

3.4 Model

Our model is estimated from a sequence of operations obtained through the transfor-
mation of a word-aligned bilingual corpus. An operation can be to generate source and
target words or to perform reordering by inserting gaps and jumping forward and back-
ward. Let O = o1, . . . , oJ be a sequence of operations as hypothesized by the translator
to generate a word-aligned bilingual sentence pair < F,E,A >; the translation model is
then defined as:

pT (F,E,A) = p(o1, .., oJ) =

J∏
j=1

p(oj |oj−n+1...oj−1)

where n indicates the amount of context used, A defines the word-alignment function
between E and F . Our translation model is implemented as an N-gram model of
operations using the SRILM toolkit (Stolcke 2002) with Kneser-Ney smoothing (Kneser
and Ney 1995). The translate operations in our model (the operations with a name start-
ing with Generate) encapsulate tuples. Tuples are minimal translation units extracted
from the word-aligned corpus. The idea is similar to N-gram-based SMT except that
the tuples in the N-gram model are generated monotonically. We do not impose the

13
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Algorithm 1 Corpus Conversion Algorithm
Input Output
E1 . . . En English Cepts
F1 . . . Fn German Cepts <O> = o1 . . . on Vector of Operations
a1 . . . an Alignment between E and F
i Position of current English cept Fai

Sequence of German words linked to Ei

j Position of current German word |Fai
| # of German words linked with Ei

j ′ Position of next German word k # of already generated German words for Ei

N Total number of English cepts aik Position of kth German translation of Ei

fj German word at position j Z Position after right-most generated German word
Ei English cept at position i S(W ) Position of the first word of a target gap W

i := 0; j := 0; k := 0

while fj is an unaligned word do
O.push(Generate Source Only (fj))
j := j + 1

while Ei is an unaligned cept do
O.push(Generate Target Only (Ei))
i := i+ 1

Z := j

while i < N do
j ′ := aik

if j < j ′ then
if fj was not generated yet then

O.push(Insert Gap)
if j = Z then

j := j ′

else
O.push(Jump Forward)
j := Z

if j ′ < j then
if j < Z and fj was not generated yet then

O.push(Insert Gap)
W := relative position of target gap (j)
O.push(Jump Back (W))
j := S(W)

if j < j ′ then
O.push(Insert Gap)
j := j ′

if k = 0 then
O.push(Generate (Fai

, Ei)) {or Generate Identical}
else

O.push(Continue Source Cept)
j := j + 1; k := k + 1
while fj is an unaligned word do

O.push(Generate Source Only (fj))
j := j + 1

if Z < j then
Z := j

if k = |Fai
| then

i := i+ 1; k := 0
while Ei is an unaligned word do

O.push(Generate Target Only (Ei))
i := i+ 1

return O
Remarks: 1) We use cept positions for English (not word positions) because English cepts are
composed of consecutive words. German positions are word-based. 2) The relative position of
the target gap is 1 if it is closest to Z, 2 if it is the second closest gap etc. 3) The operation Generate
Identical is chosen if Fi = Ei and count(Fi) is 1.
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Table 1
Step-wise Generation of Example 6 (a). The arrow indicates position j.

restriction of monotonicity in our model but integrate reordering operations inside the
generative model.

Like in the tuple N-gram model, there is a 1-1 correspondence between aligned
sentence pairs and operation sequences, i.e., we get exactly one operation sequence per
bilingual sentence given its alignments. The corpus conversion algorithm (Algorithm
1) maps each bilingual sentence pair given its alignment into a unique sequence of
operations deterministically, thus maintaining a 1-1 correspondence. This property of
the model is useful as it addresses the spurious phrasal segmentation problem in
phrase-based models. A phrase-based model assigns different scores to a derivation
based on which phrasal segmentation is chosen. Unlike this, the OSM model assigns
only one score because the model does not suffer from spurious ambiguity.

3.4.1 Discriminative Model. We use a log-linear approach (Och 2003) to make use of
standard features along with several novel features that we introduce to improve end-
to-end accuracy. We search for a target string E which maximizes a linear combination
of feature functions:

Ê = arg max
E


J∑

j=1

λjhj(F,E)


where λj is the weight associated with the feature hj(F,E). Apart from the OSM model
and standard features such as target-side language model, length bonus, distortion limit
and IBM lexical features (Koehn et al. 2003), we used the following new features:
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Deletion Penalty. Deleting a source word (Generate Source Only (X)) is a common
operation in the generative story. Because there is no corresponding target-side word,
the monolingual language model score tends to favor this operation. The deletion
penalty counts the number of deleted source words.

Gap and Open Gap Count. These features are introduced to guide the reordering
decisions. We observe a large amount of reordering in the automatically word aligned
training text. However, given only the source sentence (and little world knowledge), it
is not realistic to try to model the reasons for all of this reordering. Therefore we can use
a more robust model that reorders less than humans do. The gap count feature sums to
the total number of gaps inserted while producing a target sentence.

The open gap count feature is a penalty paid once for each translation opera-
tion (Generate(X,Y), Generate Identical, Generate Source Only (X)) performed whose
value is the number of currently open gaps. This penalty controls how quickly gaps are
closed.

Distance-based Features. We have two distance-based features to control the reordering
decisions. One of the features is the Gap Distance which calculates the distance between
the first word of a source cept X and the start of the left-most gap. This cost is paid
once for each translation operation (Generate, Generate Identical, Generate Source
Only (X)). For a source cept covering the positions X1, . . . , Xn, we get the feature value
gj = X1 − S, where S is the index of the left-most source word where a gap starts.
Another distance-based penalty used in our model is the Source Gap Width. This
feature only applies in the case of a discontinuous translation unit and computes the
distance between the words of a gappy cept. Let f = f1 . . . , fi, . . . , fn be a gappy source
cept where xi is the index of the ith source word in the cept f . The value of the gap-
width penalty is calculated as:

wj =

n∑
i=2

xi − xi−1 − 1

4. MTU-based Search

We explored two decoding strategies in this work. Our first decoder complements the
model and only uses minimal translation units in left-to-right stack-based decoding,
similar to that used in Pharaoh (Koehn 2004a). The overall process can be roughly di-
vided into the following steps: i) extraction of translation units ii) future cost estimation,
iii) hypothesis extension iv) recombination and pruning. The last two steps are repeated
iteratively until all the words in the source sentence have been translated.

Our hypotheses maintain the index of the last source word covered (j), the position
of the right-most source word covered so far (Z), the number of open gaps, the number
of gaps so far inserted, the previously generated operations, the generated target string,
and the accumulated values of all the features discussed in Section 3.4.1. The sequence
of operations may include translation operations (generate, continue source cept, etc.)
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and reordering operations (gap insertions, jumps). Recombination6 is performed on
hypotheses having the same coverage vector, monolingual language model context,
and OSM model context. We do histogram-based pruning, maintaining the 500 best
hypotheses for each stack. A large beam size is required to cope with the search errors
that result from using minimal translation units during decoding. We address this
problem in Section 5.

4.1 Handling Unaligned and Discontinuous Target Words

Aligned bilingual training corpora often contain unaligned target words and discon-
tinuous target cepts, both of which pose problems. Unlike discontinuous source cepts,
discontinuous target cepts such as "hinunterschüttete – poured . . . down" in construc-
tions like "den Drink hinunterschüttete – poured the drink down" cannot be handled
by the operation sequence model because it generates the English words in strict left-
to-right order. Therefore they have to be eliminated.

Unaligned target words are only problematic for the MTU-based decoder which has
difficulties to predict where to insert them. Thus we eliminate unaligned target words
in MTU-based decoding.

We use a 3-step process (Durrani et al. 2011) that modifies the alignments and
removes unaligned and discontinuous targets. If a source word is aligned with multiple
target words which are not consecutive, first the link to the least frequent target word
is identified, and the group (consecutive adjacent words) of links containing this word
is retained while the others are deleted. The intuition here is to keep the alignments
containing content words (which are less frequent than functional words). For example,
the alignment link "hinunterschüttete – down" is deleted and only the link "hinunter-
schüttete – poured" is retained because "down" occurs more frequently than "poured".
Crego and Yvon (2009) used split tokens to deal with this phenomenon.

For MTU-based decoding we also need to deal with unaligned target words. For
each unaligned target word, we determine the (left or right) neighbor that it appears
more frequently with and align it with the same source word as this neighbor. Crego et
al. (2005), Mariño et al. (2006) instead used lexical probabilities p(f |e) obtained from
IBM Model 1 (Brown et al. 1993) to decide whether to attach left or right. A more
sophisticated strategy based on part-of-speech entropy was proposed by Gispert and
Mariño (2006).

4.2 Initial Evaluation

We evaluated our systems on German-to-English, French-to-English and Spanish-to-
English news translation for the purpose of development and evaluation. We used data
from the 8th version of the Europarl Corpus and the News Commentary made available
for the translation task of the Eighth Workshop on Statistical Machine Translation.7 The
bilingual corpora contained roughly 2M bilingual sentence pairs, which we obtained by
concatenating news commentary (≈ 184K sentences) and Europarl for the estimation
of the translation model. Word alignments were generated with GIZA++ (Och and

6 Note that although we are using minimal translation units, recombination is still useful as different
derivations can arise through different alignments between source and target fragments. Also
recombination can still take place if hypotheses differ slightly in the output (Koehn 2010).

7 http://www.statmt.org/wmt13/translation-task.html
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Ney 2003), using the grow-diag-final-and heuristic8 (Koehn et al. 2005). All data is
lowercased, and we use the Moses tokenizer. We took news-test-2008 as the dev set for
optimization and news-test 2009-2012 for testing. The feature weights are tuned with
Z-MERT (Zaidan 2009).

4.2.1 Baseline Systems. We compared our system with i) Moses9 (Koehn et al. 2007),
ii) Phrasal10 (Cer et al. 2010), and iii) Ncode11 (Crego et al. 2011). We used all these
toolkits with their default settings. Phrasal provides two main extensions to Moses: i) a
hierarchical reordering model (Galley and Manning 2008) and ii) discontinuous source
and target phrases (Galley and Manning 2010). We used the default stack sizes of 100
for Moses12, 200 for Phrasal, 25 for Ncode (with 2n stacks). A 5-gram English language
model is used. Both phrase-based systems use the 20 best translation options per source
phrase, Ncode uses the 25 best tuple translations and a 4-gram tuple sequence model.
A hard distortion limit of 6 is used in the default configuration of both phrase-based
systems. Amongst the other defaults, we retained the hard source gap penalty of 15 and
a target gap penalty of 7 in Phrasal. We provide Moses and Ncode with the same post-
edited alignments13 from which we had removed target-side discontinuities. We feed
the original alignments to Phrasal because of its ability to learn discontinuous source
and target phrases. All the systems use MERT for the optimization of the weight vector.

4.2.2 Training. Training steps include: (i) post-editing of the alignments (Section 4.1),
(ii) generation of the operation sequence (Algorithm 1) (iii) estimation of the N-gram
translation (OSM) and language models using the SRILM toolkit (Stolcke 2002) with
Kneser-Ney smoothing. We used 5-gram models.

4.2.3 Summary of Developmental Experiments. During the developent of the MTU-
based decoder, we performed a number of experiments to obtain optimal settings for
the system. Below is a summary of the results from those experiments:r We found that discontinuous source-side cepts do not improve translation

quality in most cases but increase the decoding time by multiple folds. We
will therefore only use continuous cepts.r We performed experiments by varying the distortion limit from the
conventional window of 6 words to infinity (= no hard limit). We found
that the performance of our system is robust when removing the hard
reordering constraint and even saw a slight improvement in results in the
case of German-to-English systems. Using no distortion limit, however,
significantly increases the decoding time. We will therefore use a window
of 16 words, which we found to be optimal on the development set.

8 We also tested other symmetrization heuristics such as "Union" and "Intersection" but found the GDFA
heuristic to give best results for all language pairs.

9 http://www.statmt.org/moses/
10 http://nlp.stanford.edu/phrasal/
11 http://www.limsi.fr/Individu/jmcrego/bincoder/
12 Using stack sizes from 200− 1000 did not improve results.
13 Using post-processed alignments gave better results than using the original alignments for these baseline

systems.
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r The performance of the MTU-based decoder is sensitive to the stack size.
A high limit of 500 is required for decent search accuracy. We will discuss
this further in the next section.r We found using 10 best translation options for each extracted cept during
decoding to be optimal.

4.2.4 Comparison with the Baseline Systems. In this section we compare our system
(OSMmtu) with the three baseline systems. We used Kevin Gimpel’s tester14 which uses
bootstrap resampling (Koehn 2004b) to test which of our results are significantly better
than which of the baseline results. We mark a baseline result with "*" in order to indicate
that our model shows a significant improvement over this baseline with a confidence of
p < 0.05. We use 1000 samples during bootstrap resampling.

Our German-to-English results (see Table 2) are significantly better than the baseline
systems in most cases. Our French-to-English results show a significant improvement
over Moses in 3 out of 4 cases, and over Phrasal in half of the cases. The N-gram-based
system NCode was better or similar to our system on the French task. Our Spanish-
to-English system also showed roughly the same translation quality as the baseline
systems, but was significantly worse on the WMT12 task.

Moses Phrasald Ncode OSMmtu

German-to-English
WMT09 *20.47 *20.78 *20.52 21.17
WMT10 *21.37 *21.91 *21.53 22.29
WMT11 *20.40 20.96 *20.21 21.05
WMT12 *20.85 21.06 *20.76 21.37

French-to-English
WMT09 *25.78 *25.87 26.15 26.22
WMT10 26.65 *25.87 26.89 26.59
WMT11 *27.37 27.62 27.46 27.75
WMT12 *27.15 27.76 27.55 27.66

Spanish-to-English
WMT09 25.90 26.13 25.91 25.90
WMT10 28.91 28.89 29.02 28.82
WMT11 28.84 28.98 28.93 28.95
WMT12 31.28 31.47 31.42 30.86

Table 2
Comparison on 5 Test Sets – OSMmtu = OSM MTU-based decoder

5. Phrase-based Search

The MTU-based decoder is the most straightforward implementation of a decoder for
the operation sequence model, but it faces search problems which cause a drop in
translation accuracy. While the OSM model captures both source and target contexts and
provides a better reordering mechanism, the ability to memorize and produce larger

14 http://www.ark.cs.cmu.edu/MT/
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translation units gives an edge to the phrase-based model during decoding in terms of
better search performance and superior selection of translation units. In this section, we
combine N-gram-based modeling with phrase-based decoding. This combination not
only improves search accuracy but also increases translation quality in terms of BLEU.

The operation sequence model, although based on minimal translation units, can
learn larger translation chunks by memorizing a sequence of operations. However, often
it has difficulties to produce the same translations as the phrase-based system due to the
following drawbacks of MTU-based decoding: i) the MTU-based decoder does not have
access to all the translation units that a phrase-based decoder uses as part of a larger
phrase, ii) it requires a larger beam size to prevent early pruning of correct hypotheses
and iii) it uses less powerful future-cost estimates than the phrase-based decoder. To
demonstrate these problems, consider the phrase pair

which the model memorizes through the sequence:

Generate(Wie, What is) Insert Gap Generate (Sie, your) Jump Back (1) Generate (heissen,
name)

The MTU-based decoder needs three separate tuple translations to generate the same
phrasal translation: "Wie – What is", "Sie – your" and "heißen – name". Here we are
faced with three challenges.

Translation Coverage: The first problem is that the N-gram model does not have the
same coverage of translation options. The English cepts "What is", "your" and "name"
are not good candidate translations for the German cepts "Wie", "Sie" and "heißen"
that are usually translated to "How", "you" and "call", respectively, in isolation. When
extracting tuple translations for these cepts from the Europarl data for our system,
the tuple "Wie – What is" is ranked 124th, "heißen – name" is ranked 56th, and "Sie –
your" is ranked 9th in the list of n-best translation candidates. Typically only the 20
best translation options are used, for the sake of efficiency, and such phrasal units with
less frequent translations are never hypothesized in the N-gram-based systems. The
phrase-based system on the other hand can extract the phrase "Wie heißen Sie – what is
your name" even if it is observed only once during training.

Larger Beam Size: Even when we allow a huge number of translation options and
therefore hypothesize such units, we are faced with another challenge. A larger beam
size is required in MTU-based decoding to prevent uncommon translations from
getting pruned. The phrase-based system can generate the phrase pair "Wie heißen Sie
– what is your name" in a single step placing it directly into the stack three words to
the right. The MTU-based decoder generates this phrase in three stacks with the tuple
translations "Wie – What is", "Sie – your" and "heißen – name". A very large stack size
is required during decoding to prevent the pruning of "Wie – What is" which is ranked
quite low in the stack until the tuple "Sie – your" is hypothesized in the next stack.
While the translation quality achieved by phrase-based SMT remains the same when
varying the beam size, the performance of our system varies drastically with different
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beam sizes (especially for the German-English experiments where the search is more
difficult due to a higher number of reorderings). Costa-jussà et al. (2007) also report a
significant drop in the performance of N-gram-based SMT when a beam size of 10 is
used instead of 50 in their experiments.

Future Cost Estimation: A third problem is caused by inaccurate future cost estimation.
Using phrases helps phrase-based SMT to better estimate the future language model
cost because of the larger context available, and allows the decoder to capture local
(phrase-internal) reorderings in the future cost. In comparison the future cost for tuples
is based on unigram probabilities. The future cost estimate for the phrase pair "Wie
heißen Sie – What is your name" is estimated by calculating the cost of each feature. A
bigram language model cost, for example, is estimated in the phrase-based system as
follows:

plm = p(What) × p(is|What) × p(your|What is)× p(name|What is your)

The translation model cost is estimated as:

ptm = p(What is your name|Wie heißen Sie)

Phrase-based SMT is aware during the preprocessing step that the words "Wie heißen
Sie" may be translated as a phrase. This is helpful for estimating a more accurate future
cost because the context is already available. The same is not true for the MTU-based
decoder, to which only minimal units are available. The MTU-based decoder does
not have the information that "Wie heißen Sie" may be translated as a phrase during
decoding. The future cost estimate available to the operation sequence model for the
span covering "Wie heißen Sie" will have unigram probabilities for both the translation
and language models.

plm = p(What) × p(is|What) × p(your) × p(name)

The translation model cost is estimated as:

ptm = p(Generate(Wie, What is)) × p(Generate(heißen,name)) × p(Generate(Sie, your))

A more accurate future cost estimate for the translation model cost would be:

ptm =p(Generate(Wie,What is)) × p(Insert Gap|C2) × p(Generate(Sie,your)|C3)

× p(Jump Back(1)|C4) × p(Generate(heißen,name)|C5)

where Ci is the context for the generation of the ith operation, i.e. the up to m previous
operations. For example C1 = Generate(Wie, What is), C2 = Generate(Wie,What is) Insert
Gap and so on. The future cost estimates computed in this manner are much more
accurate because not only do they consider context, but also they take the reordering
operations into account (Durrani et al. 2013a).
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5.1 Evaluating the Phrase-based Decoder

We extended our in-house OSM decoder to use phrases instead of MTUs during decod-
ing. In order to check whether phrase-based decoding solves the mentioned problems
and improves the search accuracy, we evaluate the baseline MTU decoder and the
phrase-based decoder with the same model parameters and tuned weights. This allows
us to directly compare the model scores. We tuned the feature weights by running
MERT with the MTU decoder on the dev set. Table 3 shows results from running both,
the MTU-based (OSMmtu) and the phrase-based (OSMphr) decoder on the WMT09

test set. Improved search accuracy is the percentage of times each decoder was able to
produce a better model score than the other. Our phrase-based decoder uses a stack size
of 200. Table 3 shows the percentages of time MTU-based and phrase-based decoder
produce better model scores than their counter-part. It shows that the phrase-based
decoder produces better model scores for almost 48% of the hypotheses (on average)
across the three language pairs whereas MTU-based decoder that is using a much higher
stack size (500) produces better hypotheses in 8.2% on average.

System German French Spanish Average
Improved Search Accuracy

OSMmtu 8.98% 8.88% 6.73% 8.2%
OSMphr 56.20% 37.37% 49.36% 47.64%

Table 3
Comparing Search Accuracies of MTU-based (OSMmtu) and Phrase-based (OSMphr) Decoders

This improvement in search is also reflected in translation quality. Our phrase-based
decoder outperforms the MTU-based decoder in all the cases and gives a significant
improvement in 8 out of 12 cases (Table 4).

Moses Phrasald Ncode OSMmtu OSMphr

German-to-English
WMT09 *20.47 *20.78 *20.52 *21.17 21.47
WMT10 *21.37 *21.91 *21.53 *22.29 22.73
WMT11 *20.40 *20.96 *20.21 *21.05 21.43
WMT12 *20.85 *21.06 *20.76 *21.37 21.98

French-to-English
WMT09 *25.78 *25.87 *26.15 26.22 26.51
WMT10 26.65 *25.87 26.89 26.59 26.88
WMT11 *27.37 *27.62 *27.46 27.75 27.91
WMT12 *27.15 27.76 *27.55 *27.66 27.98

Spanish-to-English
WMT09 *25.90 26.13 *25.91 25.90 26.18
WMT10 *28.91 *28.89 *29.02 *28.82 29.37
WMT11 *28.84 *28.98 *28.93 *28.95 29.66
WMT12 31.28 31.47 31.42 *30.86 31.52

Table 4
Comparison on 4 Test Sets – OSMmtu = MTU-based decoder with stack size 500, OSMphr =
phrase-based decoder with stack size 200
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5.2 Handling of Unaligned and Discontinuous Target Words

In Section 4.1 we discussed the problem of handling unaligned and discontinuous target
words in MTU-based decoding. An advantage of phrase-based decoding is that we can
use such units during decoding if they appear within the extracted phrases. We use a
Generate Target Only (Y) operation whenever the unaligned target word “Y” occurs in
a phrase. Similarly we use the operation Generate (hinunterschüttete, poured down)
when the discontinuous tuple “hinunterschüttete – poured ... down” occurs in a phrase.
While training the model, we simply ignore the discontinuity and pretend that the word
“down” immediately follows “poured”. This can be done by linearizing the subsequent
parts of discontinuous target cepts to appear after the first word of the cept. During
decoding we use phrase-internal alignments to hypothesize such a linearization. This is
done only for the estimation of the OSM model and the target for all other purposes is
generated in its original order. This heuristic allows us to deal with target discontinuities
without extending the operation sequence model in complicated ways. It gives better
BLEU accuracy in comparison to the post editing of the alignments method described
in Section 4.1. For details and empirical results refer to Durrani et al. (2013b) (see Table
2, Compare Rows 4 and 5).

Figure 7
(i) Inside-out, (ii) CDTU (Cross-serial Discontinuous Translation Units), (iii) Bonbon

Note that the OSM model, like the discontinuous phrase-based model (Galley and
Manning 2010), allows all possible geometries as shown in Figure 7. However because
our decoder only uses continuous phrases we cannot hypothesize (ii) and (iii) unless
they appear inside of a phrase. But our model could be integrated into a discontinuous
phrase-based system to overcome this limitation.

6. Further Comparative Experiments

Our model, like the reordering models (Tillmann and Zhang 2005; Galley and Manning
2008) used in phrase-based decoders, is lexicalized. However, our model has richer
conditioning as it considers both translation and reordering context across phrasal
boundaries. The lexicalized reordering model used in phrase-based SMT only accounts
for how a phrase pair was reordered with respect to its previous phrase (or block of
phrases). While such an independence assumption is useful to reduce sparsity, it is
overgeneralizing with only three possible orientations. Moreover, because most of the
extracted phrases are observed only once, the corresponding P(o|pp) estimates are very
sparse. The model often has to fall back to short one word phrases. However, most short
phrases are observed frequently with all possible orientations during training. This
makes it difficult for the decoder to decide which orientation should be picked during
decoding. The model therefore overly relies on the language model to break such ties.
The OSM model may also suffer from data sparsity and the back-off smoothing may
fall back to very short contexts. But it might still be able to disambiguate better than the
lexicalized reordering models. Also these drawbacks can be addressed by learning an
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OSM model over generalized word representation such as POS tags, as we show in this
Section.

In an effort to make a comparison of the operation sequence model with the lexi-
calized reordering model, we incorporate the OSM model into the phrase-based Moses
decoder. This allows us to exactly compare the two models in identical settings. We
integrate the OSM model into the hypothesis extension process of the phrase-based
decoder. We convert each phrase pair into a sequence of operations by extracting the
MTUs within the phrase pair and using phrase internal alignments. The OSM model is
used as a feature in the log-linear framework. We also use four supportive features: the
Gap, Open Gap, Gap-distance and Deletion counts, as described previously (see Section
3.4.1).

6.1 Baseline

Our Moses (Koehn et al. 2007) baseline systems are based on the setup described in
(Durrani et al. 2013c). We trained our systems with the following settings: maximum
sentence length 80, grow-diag-final-and symmetrization of GIZA++ alignments, an in-
terpolated Kneser-Ney smoothed 5-gram language model with KenLM (Heafield 2011)
used at runtime, distortion limit of 6, minimum bayes-risk decoding (Kumar and Byrne
2004), cube pruning (Huang and Chiang 2007) and the no-reordering-over-punctuation
heuristic. We used factored models (Koehn and Hoang 2007) for German–English and
English–German. We train the lexicalized reordering model (Koehn et al. 2005) with
msd-bidirectional-fe settings.

6.2 Results

Table 5 shows that the OSM model gives higher gains than the lexicalized reordering
model on top of a plain phrase-based baseline (Pb). The average improvement obtained
by using the lexicalized reordering model (Pblex) over the baseline (Pb) is 0.50. In
comparison, the average improvement obtained by using the OSM model (Pbosm)
over the baseline (Pb) is 0.74. The average improvement obtained by the combination
(Pblex+osm) is 0.97. The average improvement obtained by adding the OSM over the
baseline (Pblex) is 0.47. We tested for significance and found that in 7 out of 8 cases
adding the OSM on top of Pblex gives a statistically significant improvement with a
confidence of p < 0.05. Significant differences are marked with "*".

Pb Pblex Pbosm Pblex+osm

MT12 MT13 MT12 MT13 MT12 MT13 MT12 MT13

FR-EN 30.19 30.73 30.74 30.89 30.77 *31.34 30.97 *31.48
EN-FR 28.45 29.62 28.98 30.06 29.16 30.46 *29.38 *30.54
ES-EN 33.64 29.86 34.07 30.25 34.24 *30.72 *34.43 *31.04
EN-ES 33.57 29.26 34.30 30.03 34.51 30.07 *34.71 *30.53

Avg 30.67 31.17 +0.50 31.41 +0.74 31.64 +0.97

Table 5
Comparison against the Lexicalized Reordering Model – Pb = Baseline without Lexical
Reordering – "*" indicates statistical significance over baseline (Pblex = Pb + Lexicalized
Reordering)
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6.3 Comparison with Tuple Sequence Model

In an additional experiment, we studied how much the translation quality decreases
when all reordering operations are removed from the operation sequence model during
training and decoding. The resulting model is similar to the tuple sequence model
(TSM) of Mariño et al. (2006), except that we are using phrase-internal reordering rather
than POS-based rewrite rules to do the source linearization. Table 6 shows an average
improvement of just 0.13 on top of the baseline phrase-based system with lexicalized
reordering, which is much lower than the 0.46 points obtained with the full operation
sequence model.

Pblex Pblex+osm Pblex+tsm

MT12 MT13 MT12 MT13 MT12 MT13

DE-EN 22.95 25.26 *23.54 *26.01 23.18 25.51
EN-DE 17.95 20.16 18.10 20.43 17.90 20.20
FR-EN 30.74 30.89 30.97 *31.48 30.80 31.04
EN-FR 28.98 30.06 *29.38 *30.54 29.12 30.24
ES-EN 34.07 30.25 *34.43 *31.04 34.19 30.44
EN-ES 34.30 30.03 *34.71 *30.53 34.38 30.20

Avg 27.97 28.43 +0.46 28.10 +0.13

Table 6
Comparing Operation Sequence Model versus Tuple Sequence Model

Bilingual translation models (without reordering) have been integrated into phrase-
based systems before, either inside the decoder (Niehues et al. 2011) or to rerank the
N-best candidate translations in the output of a phrase-based system (Zhang et al.
2013). Both groups reported improvements of similar magnitude when using a target-
order left-to-right TSM model for German-English and French-English translation with
shared task data but higher gains on other data sets and language pairs. Zhang et al.
(2013) showed further gains by combining models with target and source left-to-right
and right-to-left orders. The assumption of generating the target in monotonic order
is a weakness of our work which can be addressed following Zhang et al. (2013). By
generating MTUs in source order and allowing gaps and jumps on the target side, the
model will be able to learn other reordering patterns that are ignored by the standard
OSM model.

6.4 OSM Model over Generalized Representations

Due to data sparsity it is impossible to observe all possible reordering patterns with
all possible lexical choices in translation operations. The lexically driven OSM model
therefore often backs off to very small context sizes. Consider the example shown in
Figure 1. The learned pattern "sie würden stimmen – they would vote" cannot
be generalized to "er würde wählen – he would vote". We found that the OSM
model uses only two preceding operations as context on average. This problem can be
addressed by replacing words with POS tags (or any other generalized representation
such as Morph tags, word clusters) to allow the model to consider a wider syntactic
context where this is appropriate, thus improving lexical decisions and the reordering
capability of the model. Crego and Yvon (2010) and Niehues et al. (2011) have shown
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improvements in translation quality when using a TSM model over POS units. We
estimate OSM models over generalized tags and add these as separate features to the
loglinear framework.15

Experiments. We enabled Factored sequence models (Koehn and Hoang 2007) in
German-English language pairs as these have been shown to be useful previously. We
used LoPar (Schmid 2000) to obtain morphological analysis and POS annotation of
German and MXPOST (Ratnaparkhi 1998), a maximum entropy model for English POS
tags. We simply estimate OSM models over POS tags16 by replacing the words by the
corresponding tags during training.

Pblex Pblex+osm(s) Pblex+osm(s)+osm(p)

MT12 MT13 MT12 MT13 MT12 MT13

DE-EN 22.95 25.26 23.54 26.01 23.78 26.30
EN-DE 17.95 20.16 18.10 20.43 18.33 20.70

Avg 21.58 22.02 +0.44 22.28 +0.70

Table 7
Using Generalized OSM Models – s = surface, p = pos

Table 7 shows that a system with an additional POS-based OSM model
(Pblex+osm(s)+osm(p)) gives an average improvement of +0.26 over the baseline
(Pblex+osm(s)) system that used an OSM model over surface forms only. The overall
gain by using OSM models over the baseline system is +0.70. OSM model over surface
tags considers 3-gram on average, and OSM model over POS tags considers 4.5-grams
on average, thus considering wider contextual information when making translation
and reordering decisions.

6.5 Time Complexities and Memory Usage

Table 8 shows the wall-clock decoding time (in minutes) from running the Moses de-
coder (on news-test2013) with and without the OSM models. Each decoder is run with
24 threads on a machine with 140GB RAM and 24 processors. Timings vary between
experiments because of the fact that machines were somewhat busy in some cases. But
generally OSM model increases decoding time by more than half an hour.17

Table 9 shows the overall sizes of phrase-based translation and reordering models
along with the OSM models. It also shows the model sizes when filtered on news-
test2013. A similar amount of reduction could be achieved by applying filtering to the
OSM models following the language model filtering described by Heafield and Lavie
(2010).

15 We also tried to amalgamate lexically driven OSM and generalized OSM models into a single model
rather than using these as a separate features. However, this attempt was unsuccessful (See Durrani et al.
(2014) for details).

16 We also found using morphological tags and automatic word clusters to be useful in our recent IWSLT
evaluation campaign (Birch et al. 2013; Durrani et al. 2014).

17 The code for OSM in Moses can be greatly optimized but requires major modifications to source and
target phrase classes in Moses.

26



Durrani et al. Operation Sequence Model

Into English From English
Pblex Pblex+osm Pblex Pblex+osm

DE 61 88 ∆ 27 143 158 ∆ 15
FR 108 163 ∆ 55 113 154 ∆ 41
ES 111 142 ∆ 31 74 109 ∆ 35

Avg 93 131 ∆ 38 110 140 ∆ 30

Table 8
Wall-clock Decoding Times (in minutes) on WMT-13

Into English From English
Data Sizes Phrase-Table Lex. Reo OSM Phrase-Table Lex. Reo OSM

DE 5.5M 5.8/0.59 1.5/0.14 2.0 4.9/0.14 1.6/0.24 2.1
FR 39M 28/0.35 9.4/0.99 14 28/0.33 9.7/1.2 14
ES 15.2M 9.2/0.68 3.2/0.25 4.4 9.0/0.76 3.2/0.28 4.4

Table 9
Data Sizes (in number of Sentences) and Memory Usage (in giga-bytes) – Columns: Phrase
Translation and Lexicalized Reordering Tables give Overall Model Sizes/Sizes when Filtered on
WMT-2013

7. Conclusion

In this article we presented a new model for statistical MT that combines the benefits
of two state-of-the-art SMT frameworks, namely N-gram-based and phrase-based SMT.
Like the N-gram-based model, it addresses two drawbacks of phrasal MT by better
handling dependencies across phrase boundaries, and solving the phrasal segmenta-
tion problem. In contrast to N-gram-based MT, our model has a generative story that
tightly couples translation and reordering. Furthermore it is able to consider all possible
reorderings unlike N-gram systems that perform search only on a limited number of
pre-calculated orderings. Our model is able to correctly reorder words across large
distances, and it memorizes frequent phrasal translations including their reordering as
probable operation sequences.

We tested a version of our system which decodes based on minimal translation units
(MTUs) against the state-of-the-art phrase-based systems Moses and Phrasal and the
N-gram-based system Ncode for German-to-English, French-to-English and Spanish-
to-English on three standard test sets. Our system shows statistically significant im-
provements in 9 out of 12 cases in the German-to-English translation task, and 10 out
of 12 cases in the French-to-English translation task. Our Spanish-to-English results are
similar to the baseline systems in most of the cases but consistently worse than Ncode.

MTU-based decoding suffers from poor translation coverage, inaccurate future cost
estimates and pruning of correct hypotheses. Phrase-based SMT on the other hand
avoids these drawbacks by using larger translation chunks during search. We therefore
extended our decoder to use phrases instead of cepts while keeping the statistical model
unchanged. We found that combining a model based on minimal units with phrase-
based decoding improves both search accuracy and translation quality. Our system
extended with phrase-based decoding showed improvements over all the baseline
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systems, including our MTU-based decoder. In most of the cases, the difference was
significant.

Our results show that OSM consistently outperforms the Moses lexicalized re-
ordering model and gives statistically significant gains over a very competitive Moses
baseline system. We showed that considering both translation and reordering context
is important and ignoring reordering context results in a significant reduction in the
performance. We also showed that an OSM model based on surface forms suffers from
data sparsity and that an OSM model based on a generalized representation with part-
of-speech tags improves the translation quality by considering a larger context. In the
future we would like to study whether the insight of using minimal units for modeling
and search based on composed rules would hold for hierarchical SMT. Vaswani et al.
(2011) recently showed that a Markov model over the derivation history of minimal
rules can obtain the same translation quality as using grammars formed with composed
rules, which we believe is quite promising.

8. Acknowledgments

We would like to thank the anonymous reviewers, Andreas Maletti and François
Yvon for their helpful feedback and suggestions. The research leading to these re-
sults has received funding from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreements n ◦ 287658 (EU-Bridge) and n ◦ 287688 (Mate-
Cat). Alexander Fraser was funded by Deutsche Forschungsgemeinschaft grant Models
of Morphosyntax for Statistical Machine Translation. Helmut Schmid was supported
by Deutsche Forschungsgemeinschaft grant SFB 732. This publication only reflects the
authors’ views.

References
Alexandra Birch, Nadir Durrani, and Philipp Koehn. 2013. Edinburgh SLT and MT System

Description for the IWSLT 2013 Evaluation. In Proceedings of the 10th International Workshop on
Spoken Language Translation, pages 40–48, Heidelberg, Germany.

Arianna Bisazza and Marcello Federico. 2013. Efficient Solutions for Word Reordering in
German-English Phrase-Based Statistical Machine Translation. In Proceedings of the Eighth
Workshop on Statistical Machine Translation, pages 440–451, Sofia, Bulgaria.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and R. L. Mercer. 1993. The
Mathematics of Statistical Machine Translation: Parameter Estimation. Computational
Linguistics, 19(2):263–311.

Francisco Casacuberta and Enrique Vidal. 2004. Machine Translation with Inferred Stochastic
Finite-State Transducers. Computational Linguistics, 30:205–225.

Daniel Cer, Michel Galley, Daniel Jurafsky, and Christopher D. Manning. 2010. Phrasal: A
Statistical Machine Translation Toolkit for Exploring New model Features. In Proceedings of the
North American Chapter of ACL 2010 Demonstration Session, pages 9–12, Los Angeles, California.

Colin Cherry. 2013. Improved Reordering for Phrase-Based Translation using Sparse Features. In
Proceedings of the 2013 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 22–31, Atlanta, Georgia.

David Chiang. 2007. Hierarchical Phrase-Based Translation. Computational Linguistics,
33(2):201–228.

Marta R. Costa-jussà, Josep M. Crego, David Vilar, José A.R. Fonollosa, José B. Mariño, and
Hermann Ney. 2007. Analysis and System Combination of Phrase- and N-Gram-Based
Statistical Machine Translation Systems. In Human Language Technologies 2007: The Conference of
the North American Chapter of the Association for Computational Linguistics; Companion Volume,
Short Papers, pages 137–140, Rochester, New York.

Josep M. Crego and José B. Mariño. 2006. Improving Statistical MT by Coupling Reordering and
Decoding. Machine Translation, 20(3):199–215.

28



Durrani et al. Operation Sequence Model

Josep M. Crego and José B. Mariño. 2007. Syntax-Enhanced N-gram-Based SMT. In Proceedings of
the 11th Machine Translation Summit, pages 111–118, Copenhagen, Denmark.

Josep M. Crego and François Yvon. 2009. Gappy Translation Units under Left-to-Right SMT
Decoding. In Proceedings of the Meeting of the European Association for Machine Translation, pages
66–73, Barcelona, Spain.

Josep M. Crego and François Yvon. 2010. Improving Reordering with Linguistically Informed
Bilingual N-Grams. In Coling 2010: Posters, pages 197–205, Beijing, China. The 2010
International Conference on Computational Linguistics.

Josep M. Crego, Adrià de Gispert, and José B. Mariño. 2005. The TALP Ngram-based SMT
System for IWSLT’05. In Proceedings of the International Workshop on Spoken Language Translation,
pages 116–122.

Josep M. Crego, François Yvon, and José B. Mariño. 2011. Ncode: an Open Source Bilingual
N-gram SMT Toolkit. The Prague Bulletin of Mathematical Linguistics, 96:49–58.

Nadir Durrani, Helmut Schmid, and Alexander Fraser. 2011. A Joint Sequence Translation Model
with Integrated Reordering. In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, pages 1045–1054, Portland, Oregon,
USA.

Nadir Durrani, Alexander Fraser, and Helmut Schmid. 2013a. Model With Minimal Translation
Units, But Decode With Phrases. In The 2013 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 1–11, Atlanta,
Georgia, USA.

Nadir Durrani, Alexander Fraser, Helmut Schmid, Hieu Hoang, and Philipp Koehn. 2013b. Can
Markov Models Over Minimal Translation Units Help Phrase-Based SMT? In Proceedings of the
51st Annual Meeting of the Association for Computational Linguistics, pages 399–405, Sofia,
Bulgaria.

Nadir Durrani, Barry Haddow, Kenneth Heafield, and Philipp Koehn. 2013c. Edinburgh’s
Machine Translation Systems for European Language Pairs. In Proceedings of the Eighth
Workshop on Statistical Machine Translation, pages 114–121, Sofia, Bulgaria.

Nadir Durrani, Philipp Koehn, Helmut Schmid, and Alexander Fraser. 2014. Investigating the
Usefulness of Generalized Word Representations in SMT. In Proceedings of the 25th Annual
Conference on Computational Linguistics (COLING), pages 421–432, Dublin, Ireland.

Michel Galley and Christopher D. Manning. 2008. A Simple and Effective Hierarchical Phrase
Reordering Model. In Proceedings of the 2008 Conference on Empirical Methods in Natural
Language Processing, pages 848–856, Honolulu, Hawaii.

Michel Galley and Christopher D. Manning. 2010. Accurate Non-Hierarchical Phrase-Based
Translation. In Human Language Technologies: The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguistics, pages 966–974, Los Angeles, California.

Adrià Gispert and José B. Mariño. 2006. Linguistic Tuple Segmentation in N-Gram-Based
Statistical Machine Translation. In INTERSPEECH, pages 1149–1152.

Spence Green, Michel Galley, and Christopher D. Manning. 2010. Improved Models of Distortion
Cost for Statistical Machine Translation. In Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Association for Computational Linguistics, pages
867–875, Los Angeles, California.

Kenneth Heafield and Alon Lavie. 2010. Combining Machine Translation Output with Open
Source: The Carnegie Mellon Multi-Engine Machine Translation Scheme. The Prague Bulletin of
Mathematical Linguistics, 93:27–36, January.

Kenneth Heafield. 2011. KenLM: Faster and Smaller Language Model Queries. In Proceedings of
the Sixth Workshop on Statistical Machine Translation, pages 187–197, Edinburgh, Scotland,
United Kingdom.

Liang Huang and David Chiang. 2007. Forest Rescoring: Faster Decoding with Integrated
Language Models. In Proceedings of the 45th Annual Meeting of the Association of Computational
Linguistics, pages 144–151, Prague, Czech Republic.

Reinhard Kneser and Hermann Ney. 1995. Improved Backing-off for M-gram Language
Modeling. In In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing, pages 181–184, May.

Philipp Koehn and Hieu Hoang. 2007. Factored Translation Models. In Proceedings of the 2007
Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 868–876, Prague, Czech Republic.

29



Computational Linguistics Volume XX, Number XX

Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003. Statistical Phrase-Based Translation. In
2003 Meeting of the North American Chapter of the Association for Computational Linguistics, pages
127–133, Edmonton, Canada.

Philipp Koehn, Amittai Axelrod, Alexandra Birch, Chris Callison-Burch, Miles Osborne, and
David Talbot. 2005. Edinburgh System Description for the 2005 IWSLT Speech Translation
Evaluation. In International Workshop on Spoken Language Translation.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej Bojar,
Alexandra Constantin, and Evan Herbst. 2007. Moses: Open Source Toolkit for Statistical
Machine Translation. In Proceedings of the 45th Annual Meeting of the Association for
Computational Linguistics: Demonstrations, Prague, Czech Republic.

Philipp Koehn. 2004a. Pharaoh: A Beam Search Decoder for Phrase-Based Statistical Machine
Translation Models. In Association for Machine Translation in the Americas, pages 115–124.

Philipp Koehn. 2004b. Statistical Significance Tests for Machine Translation Evaluation. In
Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, pages
388–395, Barcelona, Spain.

Philipp Koehn. 2010. Statistical Machine Translation. Cambridge University Press, The Edinburgh
Building, Shaftsbury Road, Cambridge.

Shankar Kumar and William J. Byrne. 2004. Minimum Bayes-Risk Decoding for Statistical
Machine Translation. In Human Language Technologies: The 2004 Annual Conference of the North
American Chapter of the Association for Computational Linguistics, pages 169–176.

José B. Mariño, Rafael E. Banchs, Josep M. Crego, Adrià de Gispert, Patrik Lambert, José A. R.
Fonollosa, and Marta R. Costa-jussà. 2006. N-gram-Based Machine Translation. Computational
Linguistics, 32(4):527–549.

Robert Moore and Chris Quirk. 2007. Faster Beam Search Decoding for Phrasal Statistical
Machine Translation. In Proceedings of the 11th Machine Translation Summit, Copenhagen,
Denmark.

Jan Niehues, Teresa Herrmann, Stephan Vogel, and Alex Waibel. 2011. Wider Context by Using
Bilingual Language Models in Machine Translation. In Proceedings of the Sixth Workshop on
Statistical Machine Translation, pages 198–206, Edinburgh, Scotland.

Franz J. Och and Hermann Ney. 2003. A Systematic Comparison of Various Statistical Alignment
Models. Computational Linguistics, 29(1):19–51.

Franz J. Och and Hermann Ney. 2004. The Alignment Template Approach to Statistical Machine
Translation. Computational Linguistics, 30(1):417–449.

Franz J. Och. 2003. Minimum Error Rate Training in Statistical Machine Translation. In
Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics, pages
160–167, Sapporo, Japan.

Adwait Ratnaparkhi. 1998. Maximum Entropy Models for Natural Language Ambiguity Resolution.
Ph.D. thesis, University of Pennsylvania, Philadelphia, PA.

Helmut Schmid. 2000. Lopar: Design and implementation. Bericht des
sonderforschungsbereiches “sprachtheoretische grundlagen für die computerlinguistik”,
Institute for Computational Linguistics, University of Stuttgart.

Andreas Stolcke. 2002. SRILM - An Extensible Language Modeling Toolkit. In International
Conference on Spoken Language Processing, Denver, Colorado.

Christoph Tillmann and Tong Zhang. 2005. A Localized Prediction Model for Statistical Machine
Translation. In Proceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics, pages 557–564, Ann Arbor, Michigan.

Ashish Vaswani, Haitao Mi, Liang Huang, and David Chiang. 2011. Rule Markov Models for
Fast Tree-to-String Translation. In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, pages 856–864, Portland, Oregon, USA.

Omar F. Zaidan. 2009. Z-MERT: A Fully Configurable Open Source Tool for Minimum Error Rate
Training of Machine Translation Systems. The Prague Bulletin of Mathematical Linguistics,
91:79–88.

Hui Zhang, Kristina Toutanova, Chris Quirk, and Jianfeng Gao. 2013. Beyond Left-to-Right:
Multiple Decomposition Structures for SMT. In The 2013 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pages
12–21, Atlanta, Georgia, USA.

30


