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Abstract
The emergence of large language models has demonstrated

that systems trained solely on text can acquire extensive world
knowledge, develop reasoning capabilities, and internalize ab-
stract semantic concepts–showcasing properties that can be as-
sociated with general intelligence. This raises an intriguing
question: Do such concepts emerge in models trained on other
modalities, such as speech? Furthermore, when models are
trained jointly on multiple modalities: Do they develop a richer,
more structured semantic understanding? To explore this, we
analyze the conceptual structures learned by speech and textual
models both individually and jointly. We employ Latent Con-
cept Analysis, an unsupervised method for uncovering and in-
terpreting latent representations in neural networks, to examine
how semantic abstractions form across modalities. To support
reproducibility, we have released our code1 along with a curated
audio version of the SST-2 dataset2 for public access.
Index Terms: Multimodal Learning, Interpretability, Concep-
tual Abstractions

1. Introduction
Recent advances in artificial intelligence have led to the devel-
opment of large neural models capable of processing and gen-
erating language, vision, and speech [1, 2, 3, 4, 5]. Among
these, large language models (LLMs) have demonstrated emer-
gent capabilities once thought to require human intelligence.
From commonsense reasoning to medical diagnosis and legal
analysis, these models have continuously pushed the boundaries
of AI-driven understanding and decision-making [1, 6]. Their
ability to internalize abstract concepts, perform multi-step rea-
soning, and apply knowledge in novel contexts has fueled dis-
cussions on their potential trajectory toward artificial general
intelligence (AGI).

However, a fundamental question remains: Are these emer-
gent capabilities unique to text-based models, or do similar
properties arise in models trained on other modalities, such
as speech? Furthermore, when models are trained on multiple
modalities, do they converge toward a shared semantic space
that facilitates conceptual abstraction, as proposed by the Se-
mantic Hub Hypothesis [7]? To explore these questions, we
analyze the conceptual structures learned by speech models and
compare them to text-based models and jointly trained multi-
modal systems. We employ Latent Concept Analysis (LCA)
[8], to uncover and compare the abstract concepts formed within
these models. We align the discovered concepts with predefined

1https://github.com/shammur/MultimodalXplain
2https://huggingface.co/collections/QCRI/multimodalxplain-

6839bbe6fc98a0b221dc42bb

taxonomies, enabling a structured comparison of semantic rep-
resentations across modalities.

In our study, we investigate unimodal models (HuBERT for
speech and BERT for text) and multimodal models (Seamless
M4T and SpeechT5) to assess their ability to capture linguis-
tic knowledge. We evaluate these models using core linguistic
tasks like part-of-speech tagging, chunking, and semantic anal-
ysis, as well as sentiment analysis, to compare their ability to
align with human-defined concepts and task-specific represen-
tations. Our study addresses the following research questions:

• Question: How do conceptual structures in speech models
differ from those in text and multimodal models?
Finding: The alignment patterns reveal that text models di-
rectly encode linguistic taxonomies from early layers, while
speech models gradually transition from acoustic to linguis-
tic representations. Multimodal models like SpeechT5 show
unique alignment due to cross-modal training.

• Question: To what extent do different modalities yield
shared or modality-specific semantic representations?
Finding: Speech models allocate less capacity to linguistic
and semantic taxonomies, focusing more on speech-specific
features like phonetics. In contrast, text models, which oper-
ate on tokenized inputs, develop more structured and deep
linguistic representations. This highlights the disparity in
how each modality internalizes semantic structures.

2. Methodology
Our methodology is designed to uncover and compare the latent
conceptual structures emerging within speech, text, and multi-
modal foundation models. To achieve this, we employ Latent
Concept Analysis (LCA) [8], an unsupervised approach that
enables the discovery and interpretation of abstract represen-
tations learned by neural networks. Our approach consists of
two stages: concept discovery and concept alignment.

2.1. Concept Discovery

Contextualized representations learned in foundation models
capture latent conceptual structures that can be interpreted
through clustering methods. Our investigation expands upon
the work done in discovering latent ontologies in contextualized
representations [9]. We extract contextualized representations
from unimodal models and multimodal models, each with L
layers (l1, l2, . . . , lL), and cluster them to obtain encoded con-
cepts. In this context, a concept refers to a set of linguistic units
such as words, phonemes, or acoustic patterns, grouped based
on lexical, semantic, syntactic, morphological, or phonetic rela-
tionships. Figure 1 showcases concepts within the latent space
of the different models, wherein word representations are ar-



(a) Nationalities and Ethnicities (b) Names Starting with /dZ/ (c) NEs ending in the /t@n/ sound (d) Positive Polarity Concept

Figure 1: Sample latent concepts from different models. Figures 1a & 1d show BERT concepts; 1b & 1c show HuBERT concepts.

ranged based on distinct linguistic and task-specific concepts.
Textual Input. Given a textual utterance U = [w1, . . . , wN ],

we extract contextual embeddings at layer l: U
Ml

t−−→ Φl =
[ϕl

1, . . . , ϕ
l
N ] where ϕl

i is the embedding of wi at layer l.
Speech Input. For the corresponding speech utterance X =
[x1, x2, . . . , xT ], consisting of T frames, we extract frame-level
representations Ψl at each layer. Since our analysis focuses
on word-based concepts, we derive word-level representations3

Ψw by averaging frame embeddings within the word boundary
[tstart, tend] [10]. Word boundaries are obtained using the Mon-
treal Forced Aligner.4

2.2. Concept Alignment

Encoded concepts capture latent relationships among words
within a cluster, encompassing phonetic, lexical, syntactic, se-
mantic, and task- or modality-specific patterns. To systemati-
cally interpret these concepts, we employ an alignment metric
proposed by [11], which maps the discovered concepts to struc-
tured linguistic ontologies using predefined taxonomies.

Let CL = {Cl1 , Cl2 , . . . , Cln} be the set of linguis-
tic concepts (e.g., parts-of-speech tags of words), and CE =
{Ce1 , Ce2 , . . . , Cem} be the set of encoded concepts dis-
covered within neural language models. We define their θ-
alignment as follows:

λθ(E ,L) =
1

2

(∑
E αθ(Ce)

|CE |
+

∑
H κθ(Cl)

|CL|

)
× 100

where alignment αθ(Ce) and coverage κθ(Cl) are defined as

αθ(Ce) =

{
1, if ∃Cl ∈ CL such that |Ce∩Cl|

|Ce| ≥ θ

0, otherwise

κθ(Cl) =

{
1, if ∃Ce ∈ CE such that |Ce∩Cl|

|Ce| ≥ θ

0, otherwise

The alignment term measures how many discovered con-
cepts align with the categories of the underlying taxonomy,
while the coverage term assesses how many linguistic concepts
from a given taxonomy appear in the discovered clusters.

3. Experimental Setup
Models. We investigate both unimodal and multimodal models,
focusing on HuBERT, BERT, Seamless M4T, and SpeechT5.
HuBERT [12] is a self-supervised speech model that excels
at learning speech representations through masked prediction

3Also known as the acoustic word embeddings [10]
4https://github.com/MontrealCorpusTools/Montreal-Forced-

Aligner

of quantized acoustic features. BERT [13] is a widely used
pre-trained text model that captures rich contextual informa-
tion in language through bidirectional transformers. We ex-
plore two multimodal models: Seamless M4T [14], which com-
bines speech and text in a shared decoder, and SpeechT5 [15],
an extension of T5 that jointly learns speech and text for tasks
like speech-to-text and text-to-speech. These models represent
a spectrum of approaches to analyze representations learned
across different modalities.
Tasks. We conducted experiments using traditional taxonomies
designed to capture core linguistic concepts. These include
word morphology, represented by part-of-speech tagging [16];
syntax, explored through chunking tagging [17]; and semantics,
examined through Parallel Meaning Bank annotations [18]. We
trained sequence taggers for each of these tasks and annotated
the corresponding training data. Each core linguistic task rep-
resents a human-defined concept, which we align with encoded
representations to assess how linguistic knowledge is structured
in the model’s latent space. We also used the shallow lexical
concept such as suffixation.

We also compared encoded concepts with task-specific con-
cepts in sentiment analysis [19] using the alignment function to
measure affinity. For the positive sentiment concept, we define
Csst(+ve) as the set of words appearing exclusively in posi-
tively labeled sentences. An encoded concept Ce is considered
aligned with Csst(+ve) if a threshold θ of its words also appear
in positive sentences, with each word represented by its contex-
tualized embedding. The same process applies to Csst(−ve) to
identify negative polarity concepts.
Data. We used two datasets for concept analysis: LibriSpeech
[20], a large-scale read-speech corpus with diverse speakers,
and Stanford Sentiment Treebankv2 (SST2) [19], a text-only
sentiment classification dataset. We extended SST2 into the
speech domain (SST2-audio) using XTTSv2,5 a controllable
TTS model, to generate high-quality audio. SST2-audio pre-
serves sentiment polarity while minimizing speaker and envi-
ronmental variability, enabling analysis of semantic concepts in
speech models.
Concept Discovery and Annotation. We perform a forward
pass through the models to generate contextualized feature vec-
tors using NeuroX toolkit [21]. Subsequently, we apply K-
means clustering to the feature vectors, yielding K clusters (also
referred to as encoded concepts) for both base and fine-tuned
models. We set K = 600 and filter out representations that ap-
pear at least 10 times, following the settings prescribed by [11].
We consider an encoded concept to be aligned with the linguis-
tic concept, if it has at least 90% (θ = 0.9) match in the number
of words.

5https://docs.coqui.ai/en/latest/models/xtts.html
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(a) HuBERT
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(b) Seamless – Speech
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(c) SpeechT5 – Speech
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(d) BERT
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(f) SpeechT5 – Text
Figure 2: Layer-wise concept alignment. Y-axis shows % of aligned concepts (using θ=0.9) per encoder layer (X-axis).

4. Findings and Analysis
4.1. Comparing Modalities

In Figure 2, we illustrate how concepts learned by text, speech,
and multimodal models align with the linguistic taxonomies
studied in this paper. The alignment patterns across layers re-
veal distinct processing strategies: speech and text models han-
dle linguistic information differently. Specifically, speech mod-
els do not encode word-based linguistic taxonomies in early
layers; instead, linguistic structures emerge in the middle lay-
ers and peak in the upper layers. This trend is consistent with
SpeechT5, which has been jointly trained with text.

Unlike speech models, which gradually transition from
acoustic to linguistic representations, text models operate di-
rectly on tokenized inputs, allowing them to encode linguis-
tic taxonomies from the initial layers. Text models capture
subword-level information such as suffixation early on, while
morphology (POS), syntax (chunking), and semantics (SEM)
develop progressively, peaking in the middle layers. This pat-
tern suggests that text models incrementally build linguistic un-
derstanding, with deeper layers focusing more on integrating
syntax and semantics.

Both speech and text models exhibit a falling pattern in
alignment in the upper most layers. This decline likely reflects
the increasing abstraction of learned representations. In speech
models, this suggests a shift from phonetic and word-level pat-
terns to more holistic cues such as paralingusitic representa-
tions. In text models, the decrease in alignment indicates a tran-
sition toward contextual abstraction and task-specific reasoning,
where representations become more specialized for downstream
tasks rather than directly reflecting linguistic taxonomies.

While SpeechT5-Speech follows the observed trend in
speech models, SpeechT5-Text exhibits a different alignment

pattern. Unlike BERT and Seamless-text, which refine linguis-
tic representations throughout the network, SpeechT5’s shared
encoder allocates less capacity to explicit linguistic taxonomies
in its deeper layers. This is due to its multimodal training ob-
jective, which aligns speech and text representations for speech-
to-text and text-to-speech tasks. Unlike BERT, optimized for
masked language modeling and hierarchical linguistic abstrac-
tion, and Seamless, where text and speech do not share the latent
space, SpeechT5’s encoder is optimized for cross-modal con-
sistency, leading to representations that do not follow typical
patterns observed in other models.

Overall, our findings suggest that speech models allocate
less capacity to learning linguistic and semantic taxonomies
than text models, likely because they must also account for
speech-specific features like phonetics, prosody, and speaker
variability, which consume much of the network’s representa-
tional capacity. As a result, linguistic structures emerge later in
speech models and remain less prominent throughout their lay-
ers. We speculate that this constraint limits the ability of speech
models to encode higher-level conceptual abstractions as effec-
tively as text models, which operate directly on symbolic rep-
resentations and can dedicate more capacity to linguistic and
semantic processing. This distinction could explain why speech
models often struggle with tasks requiring deep linguistic rea-
soning or structured understanding compared to their text-based
counterparts [22, 23].

4.2. Task-specific Concepts

In the previous section, we hypothesized that the observed de-
crease in alignment in the final layers reflects a shift toward
task-specific reasoning, where the model’s representations be-
come more specialized for downstream tasks. To test this hy-
pothesis, we compared the BERT and HuBERT large mod-
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(b) BERT–SST
Figure 3: Alignment with task-specific polarity concepts

els trained for sentiment classification. Using SST2-text and
our SST2-audio, we extracted activation vectors and underly-
ing concepts from the models and aligned them with the output
classes: positive and negative. Our results, presented in Figure
3, indicate that polarity concepts begin to emerge in the final
layers of both the fine-tuned text and speech models.

A closer analysis reveals a notable asymmetry between
text and speech-based models in how they encode sentiment.
Specifically, the speech-based SST models predominantly rely
on signals from positive polarity concepts, whereas textual
models exhibit a more balanced distribution of positive and neg-
ative concepts. This suggests that speech models may struggle
to capture negative sentiment as effectively as textual models,
potentially due to the inherent differences in how sentiment is
conveyed in speech versus text. In text, explicit negations and
sentiment-laden words provide clear cues for polarity, whereas
speech-based sentiment relies more on prosodic features such as
intonation, pitch, among others which may be harder to disen-
tangle in the absence of large-scale speech-specific supervision.

This observation aligns with task performance: HuBERT
underperformed in predicting negative sentiment (accuracy of
87.48% versus BERT’s 93.21%), while both models performed
comparably when classifying positive sentiment (93.31% ver-
sus 94.98%). The disparity in negative sentiment prediction
highlights a potential limitation of current speech-based sen-
timent classifiers, which may require additional fine-tuning or
explicit modeling of prosodic features to achieve performance
parity with text-based models. Overall, our results reinforce the
idea that final layer representations are shaped by task-specific
requirements [24, 25], but they also highlight potential gaps in
how different modalities encode sentiment. Addressing these
gaps could involve integrating additional linguistic or prosodic
cues in speech-based models, leveraging multi-modal learning
strategies, or exploring alternative architectures that better cap-
ture the nuances of spoken sentiment.

4.3. Qualitative Analysis

In our qualitative analysis, we explored how the models learn
and represent concepts by leveraging GPT for annotation.
While we identified concepts that align with established linguis-
tic taxonomies, it’s important to note that these models may not
always strictly conform to human-defined concepts. To inter-
pret and analyze these concepts more effectively, we can an-
notate them for further exploration. Following [26], we em-
ploy ChatGPT in a zero-shot setting, prompting the model with
structured instructions, reported in Listing 1.
Our findings suggest that concepts in the models are often or-
ganized in compositional hierarchies, where the model initially
groups concepts based on a primary objective and then refines

them according to semantic relations. For example, the model
may first group all names starting with the sound dZ before
distinguishing between other linguistic or semantic categories
(see the concept in Figure 1b). This hierarchical structure high-
lights the model’s ability to form complex, layered associations
among concepts, which may offer insights into how it processes
and organizes knowledge.

Assistant is a large language model trained by
OpenAI.
Instructions:
Give a short and concise label that best
describes the following list of words:
["w_1", "w_2", ..., "w_N"]

Listing 1: Prompt for label assignment.

5. Related Work
The discovery and interpretation of latent concepts in deep mod-
els remain crucial challenges in NLP, particularly in speech
processing. Recent studies have focused on understanding
the internal representations learned by these models, with an
emphasis on layer-wise analysis and latent concept discov-
ery [27, 28, 9, 29, 30]. These foundational works have explored
how hierarchical linguistic features–such as surface properties,
syntax, and semantics are distributed across layers. The find-
ings suggest a progression from lexical and syntactic features
in the lower and middle layers to more abstract semantic repre-
sentations in the higher layers.

There are a handful of studies on how information is en-
coded in speech models [31, 32, 33, 34, 35]; however, latent
concept discovery and the evolution of representations across
layers remain largely underexplored compared to text-based
models. Studies such as [36, 37, 38] indicate that phonetic and
phonemic distinctions emerge in the early layers, often over-
shadowing semantic information in speech models [39]. Previ-
ous analyses show a strong alignment between HuBERT’s la-
tent units and linguistic structures, particularly phonetic cate-
gories [38], and syllabic [37]. Additionally, studies like [40]
demonstrate that model size and training objectives significantly
influence the distribution of linguistic information. Despite
these insights, in-depth research on speech, multimodal, and
encoder-decoder models remains underexplored. To address
these gaps, our study focuses on understanding how semantic
concepts emerge in deep speech models.

6. Conclusion
In this study, we compared speech, text, and multimodal mod-
els to understand how they represent linguistic concepts. Our
findings suggest that text models, such as BERT, directly en-
code linguistic structures from early layers, while speech mod-
els, like HuBERT, gradually develop linguistic representations
from acoustic features. Multimodal models like SpeechT5 ex-
hibit unique alignment patterns due to cross-modal training.
We observed that speech models allocate less capacity to lin-
guistic taxonomies, focusing more on speech-specific features
like phonetics. In task-specific tests, such as sentiment anal-
ysis, speech models showed weaker performance in capturing
negative sentiment compared to text models. Our results em-
phasize the different ways these models process and internalize
language, with text models offering richer, more structured lin-
guistic representations.
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