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ABSTRACT

Neural machine translation (NMT) models learn representations containing sub-
stantial linguistic information. However, it is not clear if such information is fully
distributed or if some of it can be attributed to individual neurons. We develop
unsupervised methods for discovering important neurons in NMT models. Our
methods rely on the intuition that different models learn similar properties, and do
not require any costly external supervision. We show experimentally that trans-
lation quality depends on the discovered neurons, and find that many of them
capture common linguistic phenomena. Finally, we show how to control NMT
translations in predictable ways, by modifying activations of individual neurons.

1 INTRODUCTION

Neural machine translation (NMT) systems achieve state-of-the-art results by learning from large
amounts of example translations, typically without additional linguistic information Durrani et al.
(2014) or features (Durrani et al., 2015; Joty et al., 2017) as used in the traditional SMT models.
Recent studies have shown that representations learned by NMT models contain a non-trivial amount
of linguistic information on multiple levels: morphological (Belinkov et al., 2017a; Dalvi et al.,
2017), syntactic (Shi et al., 2016b), and semantic (Hill et al., 2017). These studies use trained
NMT models to generate feature representations for words, and use these representations to predict
certain linguistic properties. This approach has two main limitations. First, it targets the whole
vector representation and fails to analyze individual dimensions in the vector space. In contrast,
previous work found meaningful individual neurons in computer vision (Zeiler & Fergus, 2014;
Zhou et al., 2016; Bau et al., 2017, among others) and in a few NLP tasks (Karpathy et al., 2015;
Radford et al., 2017; Qian et al., 2016a). Second, these methods require external supervision in the
form of linguistic annotations. They are therefore limited by available annotated data and tools.

In this work, we make initial progress towards addressing these limitations by developing unsuper-
vised methods for analyzing the contribution of individual neurons to NMT models. We aim to
answer the following questions:

• How important are individual neurons for obtaining high-quality translations?
• Do individual neurons in NMT models contain interpretable linguistic information?
• Can we control MT output by intervening in the representation at the individual neuron level?

To answer these questions, we develop several unsupervised methods for ranking neurons according
to their importance to an NMT model. Inspired by work in machine vision (Li et al., 2016b), we
hypothesize that different NMT models learn similar properties, and therefore similar important
neurons should emerge in different models. To test this hypothesis, we map neurons between pairs of
trained NMT models using several methods: correlation analysis, regression analysis, and SVCCA,
a recent method combining singular vectors and canonical correlation analysis (Raghu et al., 2017).
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Our mappings yield lists of candidate neurons containing shared information across models. We
then evaluate whether these neurons carry important information to the NMT model by masking
their activations during testing. We find that highly-shared neurons impact translation quality much
more than unshared neurons, affirming our hypothesis that shared information matters.

Given the list of important neurons, we then investigate what linguistic properties they capture,
both qualitatively by visualizing neuron activations and quantitatively by performing supervised
classification experiments. We were able to identify neurons corresponding to several linguistic
phenomena, including morphological and syntactic properties.

Finally, we test whether intervening in the representation at the individual neuron level can help
control the translation. We demonstrate the ability to control NMT translations on three linguistic
properties—tense, number, and gender—to varying degrees of success. This sets the ground for
controlling NMT in desirable ways, potentially reducing system bias to properties like gender.

Our work indicates that not all information is distributed in NMT models, and that many human-
interpretable grammatical and structural properties are captured by individual neurons. Moreover,
modifying the activations of individual neurons allows controlling the translation output according
to specified linguistic properties. The methods we develop here are task-independent and can be
used for analyzing neural networks in other tasks. More broadly, our work contributes to the lo-
calist/distributed debate in artificial intelligence and cognitive science (Gayler & Levy, 2011) by
investigating the important case of neural machine translation.

2 RELATED WORK

Much recent work has been concerned with analyzing neural representations of linguistic units,
such as word embeddings (Köhn, 2015; Qian et al., 2016b), sentence embeddings (Adi et al., 2016;
Ganesh et al., 2017; Brunner et al., 2018), and NMT representations at different linguistic levels:
morphological (Belinkov et al., 2017a), syntactic (Shi et al., 2016b), and semantic (Hill et al., 2017;
Belinkov et al., 2017b). These studies follow a common methodology of evaluating learned repre-
sentations on external supervision by training classifiers or measuring other kinds of correlations.
Thus they are limited to the available supervised annotation. In addition, these studies also do not
typically consider individual dimensions. In contrast, we propose intrinsic unsupervised methods for
detecting important neurons based on correlations between independently trained models. A similar
approach was used to analyze vision networks (Li et al., 2016b), but to the best of our knowledge
these ideas were not used to study NMT or other NLP models before.

In computer vision, individual neurons were shown to capture meaningful information (Zeiler &
Fergus, 2014; Zhou et al., 2016; Bau et al., 2017). Even though some doubts were cast on the impor-
tance of individual units (Morcos et al., 2018), recent work stressed their contribution to predicting
specific object classes via masking experiments similar to ours (Zhou et al., 2018). A few studies
analyzed individual neurons in NLP. For instance, neural language models learn specific neurons
that activate on brackets (Karpathy et al., 2015), sentiment (Radford et al., 2017), and length (Qian
et al., 2016a). Length-specific neurons were also found in NMT (Shi et al., 2016a), but generally not
much work has been devoted to analyzing individual neurons in NMT. We aim to address this gap.

3 METHODOLOGY

Much recent work on analyzing NMT relies on supervised learning, where NMT representations
are used as features for predicting linguistic annotations (see Section 2). However, such annotations
may not be available, or may constrain the analysis to a particular scheme.

Instead, we propose to use different kinds of correlations between neurons from different models as
a measure of their importance. Suppose we have M such models and let hm

t [i] denote the activation
of the i-th neuron in the encoder of the m-th model for the t-th word.1 These may be models
from different training epochs, trained with different random initializations or datasets, or even
different architectures—all realistic scenarios that researchers often experiment with. Let xmi denote
a random variable corresponding to the i-th neuron in the m-th model. xmi maps words to their

1 We only consider neurons from the top layer, although the approach can also be applied to other layers.
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Figure 1: An illustration of the correlation methods, showing how to compute the score for one
neuron using each of the methods. Here the number of models is M = 3, each having four neurons.

neuron activations: xmi : t 7→ hm
t [i]. Similarly, let xm denote a random vector corresponding to the

activations of all neurons in the m-th model: xm : t 7→ hm
t .

We consider four methods for ranking neurons, based on correlations between pairs of models. Our
hypothesis is that different NMT models learn similar properties, and therefore similar important
neurons emerge in different models, akin to neural vision models (Li et al., 2016b). Our methods
capture different levels of localization/distributivity, as described next. See Figure 1 for illustration.

3.1 UNSUPERVISED CORRELATION METHODS

Maximum correlation The maximum correlation (MaxCorr) of neuron xm
i looks for the highest

correlation with any neuron in all other models:

MaxCorr(xmi ) = max
j,m′ 6=m

|ρ(xmi , xm
′

j )| (1)

where ρ(x, y) is the Pearson correlation coefficient between x and y. We then rank the neurons in
model m according to their MaxCorr score. We repeat this procedure for every model m. This
score looks for neurons that capture properties that emerge strongly in two separate models.

Minimum correlation The minimum correlation (MinCorr) of neuron xm
i looks for the neurons

most correlated withXm
i in each of the other models, but selects the one with the lowest correlation:

MinCorr(xmi ) = min
m′ 6=m

max
j
|ρ(xm

i , x
m′

j )| (2)

Neurons in model m are ranked according to their MinCorr score. This tries to find neurons that
are well correlated with many other models, even if they are not the overall most correlated ones.

Regression ranking We perform linear regression (LinReg) from the full representation of an-
other model xm′

to the neuron xm
i . Then we rank neurons by the regression mean squared error.

This attempts to find neurons whose information might be distributed in other models.

SVCCA Singular vector canonical correlation analysis (SVCCA) is a recent method for analyzing
neural networks (Raghu et al., 2017). In our implementation, we perform PCA on each model’s
representations xm and take enough dimensions to account for 99% of the variance. For each pair
of models, we obtain the canonically correlated basis, and rank the basis directions by their CCA
coefficients. This attempts to capture information that may be distributed in less dimensions than
the whole representation. In this case we get a ranking of directions, rather than individual neurons.

3.2 VERIFYING DETECTED NEURONS

We want to verify that neurons ranked highly by the unsupervised methods are indeed important for
the NMT models. We consider quantitative and qualitative techniques for verifying their importance.
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Erasing Neurons We test importance of neurons by erasing some of them during translation.
Erasure is a useful technique for analyzing neural networks (Li et al., 2016a). Given a ranked list of
neurons π, where π(i) is the rank of neuron xi, we zero-out increasingly more neurons according to
the ranking π, starting from either the top or the bottom of the list. Our hypothesis is that erasing
neurons from the top would hurt translation performance more than erasing from the bottom.

Concretely, we first run the entire encoder as usual, then zero out specific neurons from all source
hidden states {h1, . . . ,hn} before running the decoder. For MaxCorr, MinCorr, and LinReg,
we zero out individual neurons. To erase k directions found by SVCCA, we instead project the
embedding E (corresponding to all activations of a given model over a dataset) onto the space
spanned by the non-erased directions: E′ = E(C(CTC)−1CT ), where C is the CCA projection
matrix with the first or last k columns removed. This corresponds to erasing from the top or bottom.

Supervised Verification While our focus is on unsupervised methods for finding important neu-
rons, we also utilize supervision to verify our results. Importantly, these experiments are done
post-hoc, after having a candidate neuron to examine. Since training a supervised classifier on ev-
ery neuron is costly, we instead report simple metrics that can be easily computed. Specifically, we
sometimes report the expected conditional variance of neuron activations conditioned on some prop-
erty. In other cases we found it useful to estimate a Gaussian mixture model (GMM) for predicting
a label and measure its prediction quality. The number of mixtures in the GMM is set according
to the number of classes in the predicted property (e.g. 2 mixtures when predicting tokens inside or
outside of parentheses), and its parameters are estimated using the mean and variance of the neuron
activation conditioned on each class. We obtain linguistic annotations with Spacy: spacy.io.

Visualization Interpretability of machine learning models remains elusive (Lipton, 2016), but vi-
sualizing can be an instructive technique. Similar to previous work analyzing neural networks in
NLP (Elman, 1991; Karpathy et al., 2015; Kádár et al., 2016), we visualize activations of neurons
and observe interpretable behavior. We will illustrate this with example heatmaps below.

4 EXPERIMENTAL SETUP

Data We use the United Nations (UN) parallel corpus (Ziemski et al., 2016) for all experiments.
We train models from English to 5 languages: Arabic, Chinese, French, Russian, and Spanish, as
well as an English-English auto-encoder. For each target language, we train 3 models on different
parts of the training set, each with 500K sentences. In total, we have 18 models. This setting allows
us to compare models trained on the same language pairs but different training data, as well as
models trained on different language pairs. We evaluate on the official test set.2

MT training We train 500 dimensional 2-layer LSTM encoder-decoder models with atten-
tion (Bahdanau et al., 2014). In order to study both word and sub-word properties, we use a word
representation based on a character convolutional neural network (charCNN) as input to both en-
coder and decoder, which was shown to learn morphology in language modeling and NMT (Kim
et al., 2015; Belinkov et al., 2017a).3 While we focus here on recurrent NMT, our approach can be
applied to other models like the Transformer (Vaswani et al., 2017), which we leave for future work.

5 RESULTS

5.1 ERASURE EXPERIMENTS

Figure 2 shows erasure results using the methods from Section 3.1, on an English-Spanish model.
For all four methods, erasing from the top hurts performance much more than erasing from the
bottom. This confirms our hypothesis that neurons ranked higher by our methods have a larger
impact on translation quality. Comparing erasure with different rankings, we find similar patterns
with MaxCorr, MinCorr, and LinReg: erasing the top ranked 10% (50 neurons) degrades BLEU

2Our experimental evaluation is focused on models trained on different parts of the training data, but we
provide a short discussion of results on models from different epochs of a given training run in Appendix A.4.

3We used this representation rather than BPE sub-word units (Sennrich et al., 2016) to facilitate interpretabil-
ity with respect to specific words. In the experiments, we report word-based results unless noted otherwise.
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(a) MaxCorr (b) MinCorr (c) LinReg (d) SVCCA

Figure 2: Erasing neurons (or SVCCA directions) from the top and bottom of the list of most impor-
tant neurons (directions) ranked by different unsupervised methods, in an English-Spanish model.

(a) English-Spanish (b) English-French (c) English-Chinese

Figure 3: Erasing neurons from the top or bottom of the MaxCorr ranking in three language pairs.

by 15-20 points, while erasing the bottom 10% neurons only hurts by 2-3 points. In contrast, erasing
SVCCA directions results in rapid degradation: 15 BLEU point drop when erasing 1% (5) of the top
directions, and poor performance when erasing 10% (50). This indicates that top SVCCA directions
capture very important information in the model. We analyze these top neurons and directions in the
next section, finding that top SVCCA directions focus mostly on identifying specific words.

Figure 3 shows the results of MaxCorr when erasing neurons from top and bottom, using models
trained on three language pairs. In all cases, erasing from the top hurts performance more than
erasing from the bottom. We found similar trends with other language pairs and ranking methods.

5.2 EVALUATING TOP NEURONS

What kind of information is captured by the neurons ranked highly by each of our ranking methods?
Previous work found specific neurons in NMT that capture position of words in the sentence (Shi
et al., 2016a). Do our methods capture similar properties? Indeed, we found that many top neurons
capture position. For instance, Table 1 shows the top 10 ranked neurons from an English-Spanish
model according to each of the methods. The table shows the percent of variance in neuron activation
that is eliminated by conditioning on position in the sentence, calculated over the test set. Similarly,
it shows the percent of explained variance by conditioning on the current token identity.

We observe an interesting difference between the ranking methods. LinReg and especially SVCCA,
which are both computed by using multiple neurons, tend to find information determined by the
identity of the current token. MinCorr and to a lesser extent MaxCorr tend to find position in-
formation. This suggests that information about the current token is often distributed in multiple
neurons, which can be explained by the fact that tokens carry multiple kinds of linguistic informa-
tion. In contrast, position is a fairly simple property that the NMT encoder can represent in a small
number of neurons. That fact that many top MinCorr neurons capture position suggests that this
kind of information is captured in multiple models in a similar way.

5.3 LINGUISTICALLY INTERPRETABLE NEURONS

Neurons that activate on specific tokens or capture position in the sentence are important in some
of the methods, as shown in the previous section. But they are not highly ranked in all methods
and are also less interesting from the perspective of capturing language information. In this section,
we investigate several linguistic properties by measuring predictive capacity and visualizing neuron
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Table 1: Top 10 neurons (or SVCCA directions) in an English-Spanish model according to the four
methods, and the percentage of explained variance by conditioning on position or token identity.

MaxCorr MinCorr LinReg SVCCA

ID Pos Tok ID Pos Tok ID Pos Tok Pos Tok

464 92% 10% 342 88% 7.9% 464 92% 10% 86% 26%
342 88% 7.9% 464 92% 10% 260 0.71% 94% 1.6% 90%
260 0.71% 94% 260 0.71% 94% 139 0.86% 93% 7.5% 85%
49 11% 6.1% 383 67% 6.5% 494 3.5% 96% 20% 79%
124 77% 48% 250 63% 6.8% 342 88% 7.9% 1.1% 89%
394 0.38% 22% 124 77% 47% 228 0.38% 96% 10% 76%
228 0.38% 96% 485 64% 10% 317 1.5% 83% 30% 57%
133 0.14% 87% 480 70% 12% 367 0.44% 89% 24% 55%
221 1% 30% 154 63% 15% 106 0.25% 92% 23% 60%
90 0.49% 28% 139 0.86% 93% 383 67% 6.5% 18% 63%

Table 2: F1 scores of the top two neurons from each network for detecting tokens inside parentheses,
and the ranks of the top neuron according to our intrinsic unsupervised methods.

Neuron 1st 2nd Max Min Reg Neuron 1st 2nd Max Min Reg

en-es-1:232 0.66 0.23 15 45 27 en-ar-3:331 0.76 0.29 18 93 50
en-es-2:208 0.69 0.21 9 44 22 en-ru-1:259 0.74 0.23 11 48 45
en-es-3:47 0.56 0.22 12 35 24 en-ru-2:23 0.81 0.15 11 72 32
en-fr-1:449 0.51 0.24 38 43 15 en-ru-3:214 0.74 0.35 25 67 116
en-fr-2:361 0.58 0.25 29 45 61 en-zh-1:49 0.68 0.53 6 84 64
en-fr-3:205 0.35 0.33 228 236 206 en-zh-2:159 0.75 0.49 6 48 38
en-ar-1:212 0.45 0.41 85 79 41 en-zh-3:467 0.53 0.31 6 60 48
en-ar-2:166 0.75 0.26 6 119 67

activations. The supplementary material discusses more properties. Also see Dalvi et al. (2019a) for
more on linguistically interpretable neurons.

Parentheses Table 2 shows top neurons from each model for predicting that tokens are in-
side/outside of parentheses, quotes, or brackets, estimated by a GMM model. Often, the parentheses
neuron is unique (low scores for the 2nd best neuron), suggesting that this property tends to be rel-
atively localized. Generally, neurons that detect parentheses were ranked highly in most models by
the MaxCorr method, indicating that they capture important patterns in multiple networks.

The next figure visualizes the most predictive neuron in an English-Spanish model. It activates pos-
itively (red) inside parentheses and negatively (blue) outside. Similar neurons were found in RNN
language models (Karpathy et al., 2015). Next we consider more complicated linguistic properties.

Tense We annotated the test data for verb tense (with Spacy) and trained a GMM model to predict
tense from neuron activations. The following figure shows activations of a top-scoring neuron (0.66
F1) from the English-Arabic model on the first 5 test sentences. It tends to activate positively (red
color) on present tense (“recognizes”, “recalls”, “commemorate”) and negatively (blue color) on past
tense (“published”, “disbursed”, “held”). These results are obtained with a charCNN representation,
which is sensitive to common suffixes like “-ed”, “-es”. However, this neuron also detects irregular
past tense verbs like “held”, suggesting that it captures context in addition to sub-word information.
The neuron also makes some mistakes by activating weakly positively on nouns ending with “s”
(“videos”, “punishments”), presumably because it gets confused with the 3rd person present tense.
Similarly, it activates positively on “Spreads”, even though it functions as a noun in this context.

Table 3 shows correlations of neurons most correlated with this tense neuron, according to
MaxCorr. All these neurons are highly predictive of tense: all but 3 are in the top 10 and and 8 out
of 15 (non-auto-encoder) neurons have the highest F1 score for predicting tense. The auto-encoder
English models are an exception, exhibiting much lower correlations with the English-Arabic tense
neuron. This suggests that tense emerges in a “real” NMT model, but not in an auto-encoder that
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Table 3: Correlations (ρ) and tense predictiveness (F1 score and Rank) of the most correlated neurons
in all models relative to a tense neuron in an English-Arabic model.

Neuron ρ F1 R Neuron ρ F1 R Neuron ρ F1 R

en-ar-1:8 1 0.67 1 en-fr-1:314 0.48 0.46 1 en-zh-1:383 -0.51 0.54 1
en-ar-2:303 0.57 0.43 3 en-fr-2:333 -0.58 0.61 2 en-zh-2:451 -0.18 0.29 2
en-ar-3:108 0.66 0.62 1 en-fr-3:399 -0.69 0.6 1 en-zh-3:165 -0.30 0.28 6
en-es-1:114 0.56 0.59 1 en-ru-1:330 -0.39 0.54 1 en-en-1:180 -0.03 0 471
en-es-2:282 -0.36 0.46 3 en-ru-2:489 0.29 0.08 27 en-en-2:24 -0.19 0 319
en-es-3:255 -0.22 0.26 8 en-ru-3:397 -0.50 0.52 1 en-en-3:486 -0.33 0.51 1

only learns to copy. Interestingly, English-Chinese models have somewhat lower correlated neurons
with the tense neuron, possibly due to the lack of explicit tense marking in Chinese. The encoder
does not need to pay as much attention to tense when generating representations for the decoder.

Other Properties We found many more linguistic properties by visualizing top neurons ranked by
our methods, especially with MaxCorr. We briefly mention some of these here and provide more
details and quantitative results in the appendix. We found neurons that activate on numbers, dates,
adjectives, plural nouns, auxiliary verbs, and more. We also investigated noun phrase segmentation,
a compositional property above the word level, and found high-scoring neurons (60-80% accuracy)
in every network. Many of these neurons were ranked highly by the MaxCorr method. In contrast,
other methods did not rank such neurons very highly. See Table 5 in the appendix for the full results.

Some neurons have quite complicated behavior. For example, when visualizing neurons highly
ranked by MaxCorr we found a neuron that activates on numbers in the beginning of a sentence,
but not elsewhere (see Figure 7 in the appendix). It would be difficult to conceive of a supervised
prediction task which would capture this behavior a-priori, without knowing what to look for. Our
unsupervised methods are flexible enough to find any neurons deemed important by the NMT model,
without constraining the analysis to properties for which we have supervised annotations.

6 CONTROLLING TRANSLATIONS

In this section, we explore a potential benefit of finding important neurons with linguistically
meaningful properties: controlling the translation output. This may be important for mitigating
biases in neural networks. For instance, gender stereotypes are often reflected in automatic
translations, as the following motivating examples from Google Translate demonstrate.4

(1) a. o bir doctor
b. he is a doctor

(2) a. o bir hemşire
b. she is a nurse

The Turkish sentences (1a, 2a) have no gender information—they can refer to either male or female.
But the MT system is biased to think that doctors are usually men and nurses are usually women,
so its generated translations (1b, 2b) represent these biases. If we know the correct gender from
another source such as metadata, we may want to encourage the system to output a translation
with the correct gender. We make here a modest step towards this goal by intervening in neuron
activations to induce a desired translation.

4Retrieved on 9/16/2018. This particular example has recently been addressed in Google Translate by
providing alternative gendered translation. For more biased examples, see mashable.com/2017/11/30/
google-translate-sexism.
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(a) Tense (b) Number (c) Gender

Figure 4: Success rates and BLEU scores for controlling NMT by modifying neuron activations.

We conjecture that if a given neuron matters to the model, then we can control the translation in
predictable ways by modifying its activations. To do this, we first encode the source sentence as
usual. Before decoding, we set the activation of a particular neuron in the encoder state to a value α,
which is a function of the mean activations over a particular property (defined below). To evaluate
our ability to control the translation, we design the following protocol:

1. Tag the source and target sentences in the development set with a desired property, such as
gender (masculine/feminine). We use Spacy for these tags.

2. Obtain word alignments for the development set using an alignment model trained on 2 million
sentences of the UN data. We use fast align (Dyer et al., 2013) with default settings.

3. For every neuron in the encoder, predict the target property on the word aligned to its source
word activations using a supervised GMM model.5

4. For every word having a desired property, modify the source activations of the top k neurons
found in step 3 and generate a modified translation. The modification value is defined as
α = µ1 + β(µ1 − µ2), where µ1 and µ2 are mean activations of the property we modify from
and to, respectively (e.g. modifying gender from masculine to feminine), and β is a hyper-
parameter.

5. Tag the output translation and word-align it to the source. Declare success if the source word
was aligned to a target word with the desired property value (e.g. feminine).

6.1 RESULTS

Figure 4 shows translation control results in an English-Spanish model. We report success rate—the
percentage of cases where the word was aligned to a target word with the desired property—and the
effect on BLEU scores, when varying α. Our tense control results are the most successful, with up
to 67% success rate for changing past-to-present. Modifications generally degrade BLEU, but the
loss at the best success rate is not large (2 BLEU points). Appendix A.2 provides more tense results.

Controlling other properties seems more difficult, with the best success rate for controlling number
at 37%, using the top 5 number neurons. Gender is the most difficult to control, with a 21% success
rate using the top 5 neurons. Modifying even more neurons did not help. We conjecture that these
properties are more distributed than tense, which makes controlling them more difficult. Future
work can explore more sophisticated methods for controlling multiple neurons simultaneously.

6.2 EXAMPLE TRANSLATIONS

We provide examples of controlling translation of number, gender, and tense. While these are cherry-
picked examples, they illustrate that the controlling procedure can work in multiple properties and
languages. We discuss language-specific patterns below.

Number Table 4a shows translation control results for a number neuron from an English-Spanish
model, which activates negatively/positively on plural/singular nouns. The translation changes from
plural to singular as we increase the modification α. We notice that using too high α values yields

5This is different from our results in the previous section, where we predicted a source-side property, be-
cause here we seek neurons that are predictive of target-side properties to facilitate controlling the translation.
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Table 4: Examples for controlling translation by modifying activations of different neurons on the
italicized source words. α = modification value (–, no modification).

(a) Controlling number when translating “The interested parties” to Spanish.

α Translation Num α Translation Num

-1 abiertas particulares pl. 0.125 La parte interesada sing.
-0.5 Observaciones interesadas pl. 0.25 Cuestion interesada sing.
-0.25, -0.125, 0 Las partes interesadas pl. 0.5, 1 Gran útil sing.

(b) Controlling gender when translating “The interested parties” (left) and “Questions relating to information”
(right) to Spanish.

α Translation Gen α Translation Gen

-0.5, -0.25 Los partidos interados ms. -1 Temas relativos a la información ms.
0, 0.25 Las partes interesadas fm. -0.5, 0, 0.5 Cuestiones relativas a la información fm.

(c) Controlling tense when translating “The committee supported the efforts of the authorities”.

α Translation Tense

Arabic –/+10 �AWls�� {Ah�@b� ¨t��  wh��A\ wh�} Tn�l�� d§¥�w\�d§�¤ past/present

French –/-20 Le Comité a appuyé/appuie les efforts des autorités past/present

Spanish –/-3/0 El Comité apoyó/apoyaba/apoya los esfuerzos de las autoridades past/impf./present

Russian –/-1 Комитет поддержал/поддерживает усилия властей past/present

Chinese –/-50 委员会支持当局的努力 / 委员会正在支持当局的努力 untensed/present

nonsense translations, but with correct number: transitioning from the plural adjective particulares
(“particular”) to the singular adjective útil (“useful”). In between, we see a nice transition between
plural and singular translations. Interestingly, the translations exhibit correct agreement between the
modified noun and its adjectives and determines, e.g., Las partes interesadas vs. La parte interesada.
This is probably due to the strong language model in the decoder.

Gender Table 4b shows examples of controlling gender translation for a gender neuron from the
same model, which activates negatively/positively on masculine/feminine nouns. The translations
change from masculine to feminine synonyms as we increase the modification α. Generally, we
found it difficult to control gender, as also suggested by the relatively low success rate.

Tense Table 4c shows examples of controlling tense when translating from English to five target
languages. In all language pairs, we are able to change the translation from past to present by
modifying the activation of the tense neurons from the previous section (Table 3). Occasionally,
modifying the activation on a single word leads to a change in phrasing; in Arabic the translation
changes to “the efforts that the authorities invest”. In Spanish, we find a transition from past to
imperfect to present. Interestingly, in Chinese, we had to use a fairly large α value (in absolute
terms), consistent with the fact that tense is not usually marked in Chinese. In fact, our modification
generates a Chinese expression (正在) that is used to express an action in progress, similar to English
“-ing”, resulting in the meaning “is supporting”.

7 CONCLUSION

We developed unsupervised methods for finding important neurons in NMT, and evaluated how
these neurons impact translation quality. We analyzed several linguistic properties that are captured
by individual neurons using quantitative prediction tasks and qualitative visualizations. We also
designed a protocol for controlling translations by modifying neurons that capture desired properties.

Our analysis can be extended to other NMT components (e.g. the decoder) and architec-
tures (Gehring et al., 2017; Vaswani et al., 2017), as well as other tasks. We believe that more work
should be done to analyze the spectrum of localized vs. distributed information in neural language
representations. We would also like to expand the translation control experiments to other architec-
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tures and components (e.g. the decoder), and to develop more sophisticated ways to control trans-
lation output, for example by modifying representations in variational NMT architectures (Zhang
et al., 2016; Su et al., 2018). Our code is publicly available6 as part of the NeuroX toolkit Dalvi
et al. (2019b).
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A ADDITIONAL RESULTS AND VISUALIZATIONS

A.1 NOUN PHRASE SEGMENTATION

Table 5 shows the top neurons from each network by accuracy when classifying interior, exterior,
or beginning of a noun phrase. The annotations were obtained with Spacy. We found high-scoring
neurons (60-80% accuracy) in every network. Many of these neurons were ranked highly by the
MaxCorr ranking methods. In contrast, other correlation methods did not rank such neurons very
highly. Thus there is correspondence between a high rank by our intrinsic unsupervised measure
MaxCorr and the neuron’s capacity to predict external annotation.

Table 5: Top neuron from each network by accuracy for classifying interior, exterior, or beginning
of a noun phrase, as well as ranking of these neurons by our intrinsic unsupervised measures.

Rank
Neuron Accuracy MaxCorr MinCorr LinReg

en-es-1:221 0.78 9 53 58
en-es-2:158 0.76 12 60 65
en-es-3:281 0.72 25 40 111
en-fr-1:111 0.76 13 63 123
en-fr-2:85 0.74 33 46 88
en-fr-3:481 0.75 14 66 135
en-ar-1:168 0.71 17 59 49
en-ar-2:190 0.76 48 81 92
en-ar-3:383 0.70 16 80 77
en-ru-1:38 0.66 36 55 159
en-ru-2:130 0.67 35 65 136
en-ru-3:78 0.66 160 108 124
en-zh-1:427 0.64 23 76 240
en-zh-2:199 0.65 187 218 233
en-zh-3:28 0.67 65 33 44

A.2 CONTROLLING TRANSLATIONS

We provide additional translation control results. Table 6 shows the tense results using the best
modification value from Figure 4a. We report the number of times the source word was aligned to a
target word which is past or present, or to multiple words that include both or neither of these tenses.
The success rate is the percentage of cases where the word was aligned to a target word with the
desired tense. By modifying the activation of only one neuron (the most predictive one), we were
able to change the translation from past to present in 67% of the times and vice-versa in 49% of the
times. In many other cases, the tense was erased, that is, the modified source word was not aligned
to any tensed word, which is a partial success.

Table 6: Results for controlling tense.

From
To Past Present Both Neither Success Rate

Past 85 820 9 311 67%
Present 1586 256 30 1363 49%
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A.3 VISUALIZATIONS

Here we provide additional visualizations of neurons capturing different linguistic properties.

Noun phrases We visualize the top scoring neuron (79%) from an English-Spanish model in Fig-
ure 5. Notice how the neuron activates positively (red color) on the first word in the noun phrases,
but negatively (blue color) on the rest of the noun phrase (e.g. “Regional” in “Regional Service
Centre”).

Figure 5: Visualization of a neuron from an English-Spanish model that activates positively (red
color) on the first word in the noun phrase and negatively (blue) on the following words.

Dates and Numbers Figure 6 shows activations of neurons capturing dates and numbers. These
neurons were ranked highly (top 30) by MaxCorr when ranking an English-Arabic model trained
with charCNN representations. We note that access to character information leads to many neurons
capturing sub-word information such as years (4-digit numbers). The first neuron is especially
sensitive to month names (“May”, “April”). The second neuron is an approximate year-detector: it
is sensitive to years (“2015”) as well as other tokens with four digits (“7439th”, “10.15”).

(a) Month neuron

(b) Approximate “year” neuron

Figure 6: Neurons capturing dates and numbers.

List items Figure 7 shows an interesting case of a neuron that is sensitive to the appearance of two
properties simultaneously: position in the beginning of the sentence and number format. Notice that
it activates strongly (negatively) on numbers when they open a sentence but not in the middle of the
sentence. Conversely, it does not activate strongly on non-number words that open a sentence. This
neuron aims to capture patterns of opening list items.

A.4 RESULTS ON MODELS FROM DIFFERENT EPOCHS

In the main experiments in the paper, we have used models trained on different parts of the training
data, as well as on different language pairs. However, our methodology can be applied to any col-
lection of models that we think should exhibit correlations in their neurons. We have verified that
this approach works with model checkpoints from different epochs of the same training run. Con-
cretely, we computed MaxCorr scores for the last checkpoint in two models—English-Spanish and
English-Arabic—when comparing to other checkpoints. In both cases, we found highly correlated
neurons across checkpoints, especially in the last few checkpoints. We also observed that erasing
the top neurons hurt translation performance more than erasing the bottom neurons, similar to the
findings in Section 5.1. Moreover, we noticed a significant overlap between the top ranked neurons
in this case and the ones found by correlating with other models, as in the rest of the paper. In partic-
ular, for the English-Spanish model, we found that 8 out of 10 and 34 out of 50 top ranked neurons
are the same in these two rankings. For the English-Arabic model, we found a similar behavior (7
out of 10 and 33 out of 50 top ranked neurons are the same). This indicates that our method may be
applied to different checkpoints as well.
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Figure 7: A neuron that activates on numbers in the beginning of sentences. The first 10 sentences
in the test set are shown.
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B A CATALOG OF TOP RANKED NEURONS

In order to illustrate the range of linguistic phenomena captures by individual neurons, we provide
here a list of the top 20 neurons (or projected directions, in the case of SVCCA) found by each
of our methods, for an example English-Spanish model. For each neuron, we give the percentage
of variance that is eliminated by conditioning on position in the sentence or identity of the current
token. We also comment on what properties each neuron appears to capture, based on visualizations
of neuron activation. Where possible, we give F1 scores of a GMM model predicting certain proper-
ties such as detecting noun phrase segmentation, parenthetical phrases, adjectives, and plural nouns.
Annotations are obtained with Spacy: https://spacy.io.

Table 7: Top 20 ranked neurons by MaxCorr.

Neuron Position Token Comments

464 92% 10% Position.
342 88% 7.9% Position.
260 0.71% 94% Conjunctions: ”and”, ”or”, ”well”, ”addition”.
49 11% 6.1% Activates for several words after ”and” or ”or”.
124 77% 48% Position.
394 0.38% 22% Noun phrase segmentation. 13th-best F1-score (0.41) for finding

interiors of noun phrases. 15th-best IOB accuracy (0.62).
228 0.38% 96% Unknown: ”’s”, ”the”, ”this”, ”on”, ”that”.
133 0.14% 87% Adjective detector. Best F1-score (0.56) for finding adjectives.
221 1% 30% Noun phrase segmentation. Best F1-score for finding interiors

(0.72) and for finding beginnings (0.63). Best IOB accuracy
(0.78).

90 0.49% 28% Noun phrase segmentation. Second-best F1-score (0.56) for find-
ing beginnings of noun phrases. Second-best IOB accuracy
(0.72).

383 67% 6.5% Position.
494 3.5% 96% Punctuation/conjunctions: ”,”, ”;”, ”Also”, ”also”, ”well”.
120 0.094% 84% Plural noun detector. Best F1-score (0.85) for retrieving plural

nouns.
269 0.1% 80% Spanish noun gender detector. Very positive for ”islands”, ”activ-

ities”, ”measures” – feminine. Very negative for ”states”, ”princi-
ples”, ”aspects” – masculine.

232 0.63% 31% Parentheses. Best F1-score (0.66) for retrieving tokens inside
parentheses/quotes/brackets.

332 0.13% 83% Unknown.
324 0.18% 81% Unknown.
210 0.61% 45% Date detector. Third-best F1-score (0.36) for retrieving tokens

inside dates.
339 0.48% 39% Activates for a verb and also surrounding inflection

words/auxiliary verbs.
139 0.86% 93% Punctuation/conjunctions: ”,”, ”.”, ”–”.
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Table 8: Top 20 ranked neurons by MinCorr.

Neuron Position Token Comments

342 88% 7.9% Position.
464 92% 10% Position.
260 0.71% 94% Conjunctions: ”and”, ”or”, ”well”, ”addition”.
383 67% 6.5% Position.
250 63% 6.8% Position.
124 77% 48% Position.
485 64% 10% Position.
480 70% 12% Position.
154 63% 15% Position.
139 0.86% 93% Punctuation/conjunctions: ”,”, ”.”, ”–”, ”alia”.
20 60% 9.2% Position.
494 3.5% 96% Punctuation/conjunctions: ”,”, ”;”, ”also”, ”well”.
199 67% 6% Position.
126 42% 9.4% Unknown.
348 50% 13% Position.
46 48% 8.6% Unknown.
196 60% 8.5% Position.
367 0.44% 89% Prepositions: ”of”, ”or”, ”United”, ”de”.
186 1.6% 69% Conjunctions: ”also”, ”therefore”, ”thus”, ”alia”.
244 54% 15% Position.

Table 9: Top 20 ranked neurons by LinReg.

Neuron Position Token Comments

464 92% 10% Position.
260 0.71% 94% Conjunctions: ”and”, ”or”, ”well”, ”addition”.
139 0.86% 93% Punctuation/conjunctions: ”,”, ”.”, ”–”, ”alia”.
494 3.5% 96% Punctuation/conjunctions: ”,”, ”;”, ”also”, ”well”.
342 88% 7.9% Position.
228 0.38% 96% Possibly determiners: ””s”, ”the”, ”this”, ”on”, ”that”.
317 1.5% 83% Indefinite determiners: ”(”, ”one”, ”a”, ”an”.
367 0.44% 89% Prepositions. ”of”, ”for”, ”United”, ”de”, ”from”, ”by”, ”about”.
106 0.25% 92% Possibly determiners: ”that”, ”this”, ”which”, ”the”.
383 67% 6.5% Position.
485 64% 10% Position.
186 1.6% 69% Conjunctions. ”also”, ”therefore”, ”thus”, ”alia”.
272 2% 73% Tokens that mean ”in other words”: ”(”, ”namely”, ”i.e.”, ”see”,

”or”.
124 77% 48% Position.
480 70% 12% Position.
187 1.1% 87% Unknown: ”them”, ”well”, ”be”, ”would”, ”remain”.
201 0.14% 73% Tokens that mean ”regarding”: ”on”, ”in”, ”throughout”, ”con-

cerning”, ”regarding”.
67 0.27% 71% Unknown: ”united”, ”’s”, ”by”, ”made”, ”from”.
154 63% 17% Position.
72 0.32% 89% Verbs suggesting equivalence: ”is”, ”was”, ”are”, ”become”,

”constitute”, ”represent”.
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Table 10: Top 20 ranked directions by SVCCA.

Position Token Comments

86% 26% Position
1.6% 90% Detects ”the”.
7.5% 85% Conjunctions: ”and”, ”well”, ”or”.
20% 79% Determiners: ”the”, ”this”, ”these”, ”those”.
1.1% 89% Possibly conjunctions: negative for ”and”, ”or”, ”nor”, positive for ”been”,

”into”, ”will”.
10% 76% Punctuation/conjunctions: positive for ”,”, ”;”, ”.” ”–”, negative for ”and”.
30% 57% Possibly verbs: ”been”, ”will”, ”be”, ”shall”.
24% 55% Possibly date detector.
23% 60% Possibly adjective detector.
18% 63% Unknown.
4.5% 88% Punctuation: ”.”, ”,”, ”;”
9.8% 69% Forms of ”to be”: ”is”, ”will”, ”shall”, ”would”, ”are”.
1.7% 77% Combined dates/prepositions/parentheses: negative for ”in”, ”at”, ”.”, posi-

tive for dates and in quotes/parentheses/brackets. Noisy.
16% 25% Activates for a few words after ”and”.
14% 63% Possibly plural noun detector.
0.8% 73% Spanish noun gender detector.
11% 61% Possibly singular noun detector.
13% 58% Possibly possessives: ”its”, ”his”, ”their”.
1.4% 73% Spanish noun gender detector.
5.6% 53% Unknown.
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