
LLMeBench: A Flexible Framework for Accelerating LLMs Benchmarking

Fahim Dalvi, Maram Hasanain, Sabri Boughorbel, Basel Mousi, Samir Abdaljalil,
Nizi Nazar, Ahmed Abdelali*, Shammur Absar Chowdhury,

Hamdy Mubarak, Ahmed Ali, Majd Hawasly, Nadir Durrani, Firoj Alam
Qatar Computing Research Institute, HBKU, Qatar

{faimaduddin,fialam}@hbku.edu.qa

Abstract

The recent development and success of Large
Language Models (LLMs) necessitate an evalu-
ation of their performance across diverse NLP
tasks in different languages. Although several
frameworks have been developed and made
publicly available, their customization capa-
bilities for specific tasks and datasets are of-
ten complex for different users. In this study,
we introduce the LLMeBench1 framework,
which can be seamlessly customized to eval-
uate LLMs for any NLP task, regardless of
language. The framework features generic
dataset loaders, several model providers, and
pre-implements most standard evaluation met-
rics. It supports in-context learning with zero-
and few-shot settings. A specific dataset and
task can be evaluated for a given LLM in less
than 20 lines of code while allowing full flex-
ibility to extend the framework for custom
datasets, models, or tasks. The framework has
been tested on 31 unique NLP tasks using 53
publicly available datasets within 90 experi-
mental setups, involving approximately 296K
data points. We open-sourced LLMeBench for
the community2 and a video demonstrating the
framework is available online.3

1 Introduction

The rapid advancement of sophisticated large lan-
guage models (LLMs), supported by in-context
learning (ICL) (Dong et al., 2023), has gained un-
precedented popularity among both the research
and development communities. The emergence
of such large models facilitated diverse applica-
tions (Mousi et al., 2023). Given their success,
a systematic evaluation and comparison against
state-of-the-art is important to accurately gauge the

*The contribution was made while the author was at the
Qatar Computing Research Institute.

1LLM effectiveness Benchmarking. Can be pronounced
as “lemme bench”.

2https://github.com/qcri/LLMeBench/
3https://youtu.be/9cC2m_abk3A

Model Provider Evaluation

Config

Dataset

Data
Loader Call

API

Asset Prompt
Constructor

Post-
processor

Load
Dataset

Create
Prompt

Run
Model

Call post-
processor

Call
Evaluator

F1

Figure 1: The architecture of the LLMeBench frame-
work. The dotted boxes represent the core implemented
modules of the architecture. Customization for new
tasks, datasets, and models can be done on Dataset,
Model Provider, Evaluation, and Asset modules.

potential of LLMs. A comprehensive evaluation
allows understanding of the strengths and weak-
nesses of these models; guides us towards better
human-LLMs interactions through prompting; and
facilitates their broader applicability in different
scenarios, especially in domains where safety and
security are paramount concerns (e.g., healthcare,
financial institutes) (Chang et al., 2023; Zhao et al.,
2023; Zhu et al., 2023).

Numerous initiatives were launched to compre-
hensively assess the performance of LLMs on stan-
dard NLP tasks. The HELM project (Liang et al.,
2022) conducted a thorough evaluation of LLMs
for English, spanning various metrics and scenar-
ios. Additionally, the BIG-Bench initiative (Srivas-
tava et al., 2023) introduced an extensive evalua-
tion of 214 tasks, even encompassing languages
with limited resources. Notably, evaluations have
been carried out on models like GPT2.5 (Rad-
ford et al., 2019), ChatGPT (OpenAI, 2023), and
BLOOM (Scao et al., 2022) within multitask, mul-
tilingual, and multimodal settings. These evalua-
tions were further extended to low-resource lan-
guages (Bang et al., 2023; Ahuja et al., 2023;
Hendy et al., 2023; Khondaker et al., 2023).

Evaluating LLMs across diverse tasks often en-
tails challenges related to costs, effort, and time

https://github.com/qcri/LLMeBench/
https://youtu.be/9cC2m_abk3A

due to complexities like handling API calls, task
integration, dataset inclusion, evaluation measures,
and potentially hosting datasets on public platforms
(e.g., Hugging Face (HF)). To overcome these limi-
tations, in this study, we introduce “LLMeBench”,
which facilitates a comprehensive evaluation of
these LLMs through a seamless and flexible imple-
mentation. The proposed framework, as depicted in
Figure 1, empowers users to assess various LLMs
while simplifying the integration of custom tasks,
datasets, and evaluation metrics.

A few evaluation frameworks have emerged
to facilitate extensive benchmarking of LLMs.
Among these are OpenAI evals,4 LM Harness (Gao
et al., 2021), and OpenICL (Wu et al., 2023). Each
framework offers functionalities tailored to specific
requirements. For instance, OpenICL focuses on
few-shot learning techniques. Our contribution,
LLMeBench, stands out by emphasizing a user-
friendly, plug-and-play design, that can seamlessly
integrate into existing experimental workflows, set-
ting it apart from other alternatives. LLMeBench’s
uniqueness lies in the following features:

• Supports several generic data loaders
(e.g., HF datasets), pre-implements several
model providers (such as OpenAI and
HF inference APIs for remote execution,
and FastChat (Zheng et al., 2023) and
Petals (Borzunov et al., 2023) for local
deployments), and supports all standard tasks
and evaluations, such as classification, regres-
sion, etc. Evaluating a new task/dataset/model
can be done in as few as 20 lines.

• Allows the user to create their own data loader,
connecting to their local server, ensuring data
privacy and security.

• Provides users with the flexibility to design
diverse tasks, allowing customization of data
input/output formats and evaluation criteria.

• Supports zero- and few-shot learning
paradigms with ∼300 zero-/few-shot prompts
serving as a valuable community resource.

• Enables automatic selection of few-shot exam-
ples from a user-defined train/dev set using a
maximal marginal relevance-based approach.

• Implements an efficient caching mechanism
to prevent repeated API calls, resulting in cost
savings and resolution of time-out issues.

• Offers extensive logging and caching capabil-
ities, allowing iterative model outputs post-

4https://github.com/openai/evals

class ModelBase(object):
@abstractmethod
def prompt(self, **kwargs):

''' Call to model API '''
pass

@abstractmethod
def summarize_response(self, response):

'''Extract response from model output'''
pass

Listing 1: Abstract class for implementing a new Model.

processing.
• Provides an auto-download mechanism for

public datasets, accelerating experimentation.
• Includes 31 tasks recipes featuring different

model providers. Rigorously tested with 53
datasets associated with 12 languages.

Furthermore, LLMeBench is an open-source, user-
friendly, and adaptable comprehensive benchmark-
ing framework for LLMs. It empowers both ex-
perts and non-experts to assess conventional and
unique NLP tasks, enhancing comprehension of the
models’ capabilities and their applicability across
standard and novel tasks.

2 LLMeBench

In Figure 1, we provide the architecture of the
LLMeBench framework. To ease the burden on
users in implementing common elements across
experimental setups, which are not specific to a
task, the architecture was designed to support a
uniform format for both input and intermediate out-
puts. This was achieved by employing a pipeline
that utilizes key-value dictionaries to seamlessly
pass data. The framework incorporates four fun-
damental modules, discussed below. The process
starts with a Dataset, where each input sample Si

is routed to the Asset module. Within this module,
a prompt is created and then passed to the Model
Provider for processing. The model’s response is
then funneled back to the Asset module for post-
processing. As the processing of all input samples
and the generation of corresponding responses con-
clude, the Evaluation module takes on the task of
computing evaluation metrics. The whole process
of intercommunication is overseen by a Benchmark
Driver. Throughout these processes, the inputs,
processed data, and the intermediate outputs are
cached for re-use and quick experimentation.

2.1 Model Provider module

A Model Provider abstracts away all model-
specific communication and aims to set the defaults

https://github.com/openai/evals

class DatasetBase(ABC):
@abstractmethod
def metadata(self):

''' Returns metadata for the dataset. '''
pass

@abstractmethod
def get_data_sample(self):

''' Returns a single dictionary, with
at least the following keys:
'input': <input-instance>
'label': <label> '''

pass
@abstractmethod
def load_data(self, data_path):

''' Returns a list of dictionaries, with
at least the following keys:
'input': <input-instance>
'label': <label> '''

pass

Listing 2: Abstract class for implementing a new
Dataset.

class TaskBase(ABC):
@abstractmethod
def evaluate(self, true_labels,

predicted_labels):
pass

Listing 3: Abstract class for implementing a new
Evaluation.

for maximum reproducibility (for instance assign
temperature value to zero by default). The frame-
work currently supports OpenAI’s API, the HF In-
ference API, as well as FastChat and Petals for
local deployments. Defining a new LLM model is
straightforward by extending the ModelBase class.
The initial process entails configuring essential pa-
rameters for the model setup, including factors like
temperature, top_p, etc. Furthermore, it requires
the implementation of two abstract methods (shown
in Listing 1): prompt – manages the invocation of
the model API based on the input prompt; and
summarize_response – extracts a summary of the
response from raw model output.

2.2 Dataset module

Similar to a Model provider, a Dataset imple-
mentation aims to abstract dataset-specific code,
such as loading, pre-processing, and formatting of
samples. The framework comes with four generic
data loaders, including Hugging Face, CSV, and
JSON datasets. A custom dataset can be easily
implemented by extending the DatasetBase class.
When defining a new dataset, the user is required
to implement at least three methods (depicted in
Listing 2). The first, metadata, is designed to pro-
vide comprehensive metadata such as a citation or

def config():
return {

'dataset':ExampleDataset,'dataset_args':{},
'task':ExampleTask,'task_args':{},
'model':OpenAIModel,'model_args':{},
'general_args':{}}

def prompt(input_sample):
''' Construct and return the prompt following

the model's corrsponding template'''
def post_process(response):

''' Apply custom post-processing on response
and return extracted model predicition'''

Listing 4: Methods to implement in the Asset module.

reference to the source of the dataset, its down-
load link, and the languages it covers. The sec-
ond function to be implemented in this module is
load_data, which should define a data loader ca-
pable of returning a list S comprising the samples
from the dataset, given the user-specified dataset
path. Lastly, get_data_sample should be defined
to return a Python dictionary representing a single
sample Si extracted from the dataset.

2.3 Evaluation module

The Evaluation module aims to compute metrics
and consolidate the results for a task. The frame-
work comes with built-in support for popular task
types such as Classification and Regression and is
easily extendible to any custom metric by inher-
iting from the TaskBase class. A custom imple-
mentation can define an evaluate function for a
task with specific evaluation code and metrics (see
Listing 3). The function is passed two lists: the
predicted labels, and true or gold labels. Its pri-
mary objective is to yield a user-defined Python
dictionary comprising key-value pairs representing
the outcomes of the evaluation (e.g., {“Accuracy”:
accuracy value}).

2.4 Benchmarking Asset module

The Asset module represents a benchmarking
experiment, utilizing all the modules defined in
LLMeBench as can be seen in code snippet List-
ing 4. Within this module, the user should pro-
vide full configuration for the experiment, which
includes specifying the Dataset, Model, and
Evaluation modules. The module also enables
passing model and dataset parameters.

The Asset module must also implement the
prompt function, which constructs the actual
prompt to pass to the Model, based on the input
sample. For scenarios involving few-shot learning,
the Asset module is provided with k examples to

use in prompt construction. These examples are
chosen by the framework from a training dataset
specified by the user, where k is a parameter con-
trolled by the user.

Finally, the post_process function is required
to be implemented to post-process response from
the model. This step is crucial because the output
produced by the Model is tailored to the particular
model and the prompt used, leading to potential
variations across benchmarking experiments.

2.5 Interaction
Once the aforementioned modules are imple-
mented, running a benchmarking experiment
becomes a straightforward task, accomplished
through a single command that provides access
to various adjustable parameters. The package au-
tomatically identifies the Asset to run based on
wildcard search using the provided asset name. Ad-
ditionally, the package determines whether to acti-
vate the few-shot setup when the number of shots
is specified as a parameter (--n_shots <k>). Fur-
thermore, the package supports swift testing of the
benchmarking asset by executing it on a small num-
ber of n (--limit <n>) samples, which limits the
run to the first n samples from the dataset. An
example of the command is provided below.

$ python -m llmebench --filter '*AssetName*'
--n_shots k --limit n --ignore_cache
<benchmark-dir> <results-dir>

3 Features

LLMeBench features a generic framework that
serves a broad range of tasks and models in dif-
ferent learning settings (zero-/few-shot) to evaluate
model performance. It enables scalable and rigor-
ous evaluation across diverse tasks and languages
while offering simplicity of implementation and
flexibility in customization.

3.1 Modularity
The LLMeBench framework, as shown in Figure
1, follows loosely-coupled design principles, ef-
fectively separating the data loader, models, and
evaluation components. These components interact
through a Benchmark Driver, ensuring a modular
and flexible architecture.

3.2 Generality
The framework is designed to offer generality, with
effortless customization of tasks, data, and mod-

els. The framework comes with several generic
data loaders such as Hugging Face datasets. Addi-
tionally, since users have the ability to create their
own data loaders, the framework can support any
standard data format. At the time of writing this pa-
per, we have conducted tests with different formats
including TSV, CSV, JSON, and JSONL.

In terms of tasks, the framework demonstrates
the capability to handle a diverse array of token and
sequence classification tasks. Figure 2 displays the
implemented task types, with built-in support for
all standard generic tasks. Additionally, any new
custom task can be seamlessly incorporated.

The framework also accommodates various
types of models, encompassing both open and
closed models, each with its own API-based op-
tions. For closed models, users can acquire API
keys and endpoints from hosting providers. Mean-
while, open models can be hosted on in-house
infrastructure or any accessible hosting service
through APIs. We evaluated such an integration
using BLOOMZ 176B 8bit version and Jais-13b
(32 bit) (Sengupta et al., 2023), hosting it within
our in-house infrastructure using Petals (Borzunov
et al., 2023) and FastChat. Overall, the framework
offers a high level of generality and can be readily
applied and adapted to a wide range of use cases
and research scenarios.

3.3 Prompts
LLMeBench is designed to support both zero-
and few-shot learning setups. The instructions in
prompts can be written in any language of interest.

Zero-shot prompts provide natural language in-
structions describing the task and expected output.

Few-shot prompts embed a small number of
examples to the natural language instructions for
the particular task. The framework utilizes user-
defined, task-specific training set to automatically
select few-shot examples. Various strategies ex-
ist for examples selection. Among these, we have
implemented maximal marginal relevance-based
(MMR) (Carbonell and Goldstein, 1998) selec-
tion, which has demonstrated success in previous
work by Ye et al. (2023). The approach com-
putes the similarity between a test example and
the example pool (e.g., training dataset) and selects
k examples (shots) that are both relevant and di-
verse. We apply the MMR technique on top of em-
beddings obtained from the multilingual sentence-
transformers (Reimers and Gurevych, 2019). How-

Word Segmentation,
Syntax & Info. Extraction

Sentiment, Stylistic &
Emotion Analysis

News Categorization

Demographic &
Protected Attributes

Factuality, Disinfo. &
Harmful Content Detection

Semantics

Question Answering

Machine Translation

Tasks Categories & Examples (31)

Accuracy
Pearson Correlation

F1Jaccard similarity
Macro-F1

Micro-F1
Weighted-F1 WER

BLEU

Evaluation Metrics
WikiNews

XNLI
QASR

XQuAD
MADAR ANERcorp

XGLUE Aqmar SANAD
Datasets (53)

Conll2006
ASAD

GPT-3.5 BLOOMZGPT-4
Models Tested (5)

Classification
Binary

Multi-class
Multi-label

Sequence
Seq2Seq

Seq. Labeling

Tasks Types

LLama2 JAIS

Regression

Arabic, Bangla, Bulgarian, Dutch, English, French, German, Italian, Polish, Russian, Spanish, TurkishLanguages (12)

POS Tagging

Propaganda Detection

Natural Lang. Inference

Location Detection

Sarcasm Detection

Learning Setups
Zero-shot Few-shot

Model Providers
FastChat PetalsGeneric assets OpenAI HuggingFace

Dataset Loaders
CSV TSVJSONHuggingFace

Figure 2: Summary and examples of the 53 datasets, 31 tasks, 4 model providers, 5 tested models and metrics
currently implemented and validated in LLMeBench.

ever, users also have the flexibility to utilize any
custom embedding model.

We have designed a highly efficient process to
extract embeddings and compute few-shot exam-
ples for each test sample. Specifically, it pre-selects
few-shot examples for each test sample during the
initial loading stage. This design effectively elim-
inates the need to apply and compute the MMR
score when making API calls, thus enhancing the
system’s overall efficiency.

The LLMeBench framework includes ∼300 de-
signed prompts for zero-shot and few-shot setups
that have been validated across a variety of NLP
tasks and datasets (see Section 4). This collection
serves as a strong starting point for the community
and expedite prompt engineering research.

3.4 Caching

One of the significant challenges when accessing
APIs is managing timeout issues. The necessity to
rerun experiments involving API calls not only re-
quires additional effort but also increases costs. To
address this problem, we have developed a caching
mechanism, allowing users to bypass making API
calls for samples that have already been success-
fully processed. Specifically, we save all intermedi-
ate outputs when processing a data sample, includ-
ing the generated prompt, the raw model response
and the post-processed output. On a re-run, sam-
ples that have model responses in the cache do not
actually access the API, but rather load the cached
response. Furthermore, this caching mechanism
plays a vital role in enhancing the post-processing
of the models’ output, as it can be performed re-
peatedly without having to call the API. This fea-
ture is important, given that different models yield
various types of outputs, requiring improved post-

processing to align the output accurately with the
reference label. To further counter expected time-
out and rate limitation issues with APIs, the frame-
work also applies a user-configurable wait-and-
retry mechanism. This mechanism retries API calls
in case of failure, maximizing the chance of receiv-
ing a successful response.

3.5 Dataset Auto-Download

The framework comes with support for automatic
downloading and caching of publicly available
datasets, taking care of extracting and linking them
correctly for any Asset that requires it. This allows
a new user to quickly begin experimenting with and
evaluating an existing dataset without the need to
manually acquire it first.

3.6 Task Diversity

The framework currently supports and includes a
diverse set of tasks, covering a broad spectrum that
ranges from word-level tasks to those involving
single sentences, sentence pairs, question-answer
pairs, and more. The range of tasks covers various
NLP research tracks, as can be seen in Figure 2.

3.7 Language-agnostic Framework

The LLMeBench framework is language-agnostic.
As of now, tasks for 12 languages have been incor-
porated, a number that will continuously grow as a
result of our ongoing efforts and, ideally, with the
support of the community.

3.8 Open-source Framework

We made LLMeBench accessible to the community
by releasing it as open-source. This will also en-
able the continued growth and development of the
framework within the community.

3.9 Deploying Local Model

For deploying local models, we interface
LLMeBench with FastChat framework (Zheng
et al., 2023). The latter is an open-source project 5

for serving LLMs with a fast-growing user com-
munity. Custom chat templates of popular and new
LLMs are rapidly added to the framework. This
allows a proper use of instruct-tuned LLMs in in-
ference mode, unlike other popular benchmarking
frameworks such Eval-Harness (Gao et al., 2021),
which do not use chat templates. This can lead
to a mismatch in the expected inputs of instruc-
tion tuned models, and put at disadvantage several
LLMs, especially the ones with small sizes. Our
approach for local deployment solves this issue
by relying on FastChat. Huggingface models can
be easily deployed in three steps after installing
FastChat python package: 1) Running a model con-
troller which plays a role of interfacing between
API and model calls. 2) Running a model worker
for each loaded model which manages the model
in GPU and executes the prompts and returns to
responses to the model worker. It is possible to
load model worker with vLLM 6 enabling prompt
batching for an efficient and fast inference (Kwon
et al., 2023). 3) Running an API server which
provides a compatible interface with to OpenAI
API. The local address and port of the API are
set in LLMeBench via FASTCHAT_* environment
variables.

4 Evaluation of LLMeBench

The framework has already been used across a
variety of Arabic NLP tasks and datasets (Abde-
lali et al., 2024). This involved extensive experi-
mentation using zero- and few-shot learning with
state-of-the-art large language models, including
GPT-3.5-Turbo, GPT-4, and the 8-bit version of the
BLOOMZ 176B model. In Figure 2, we provide
a summary of the tasks, datasets, and models that
have been implemented and evaluated. Given that
our assessment of the framework was based on the
current state-of-the-art NLP tasks and datasets, we
implemented task- and dataset-specific metrics re-
ported in the literature. Overall, it has been used
to evaluate 31 NLP tasks, which were categorized
based on ACL tracks, 53 datasets, and different
model providers within 2 learning setups. All the
task recipes are available within the framework.

5https://github.com/lm-sys/FastChat
6https://github.com/vllm-project/vllm/

5 Related Work

Efforts to assess the performance of LLMs on stan-
dard NLP tasks have been underway since the
launch of ChatGPT. Notable studies, such as those
by Bubeck et al. (2023), Bang et al. (2023), Ahuja
et al. (2023), and Hendy et al. (2023), have con-
ducted large-scale experiments considering multi-
linguality, multimodality, low-resource languages,
and a wide range of datasets and tasks.

Such large-scale evaluations require off-the-
shelf and easy-to-use solutions to measure the per-
formances of LLMs for a variety of NLP-related
tasks. To evaluate OpenAI’s models, the com-
pany developed the EVALs7 package, which re-
quires the dataset to be prepared in JSON format
using a predefined template. Asai et al. (2023)
developed an evaluation framework as a part of
their cross-lingual benchmarking effort. This com-
prehensive framework includes 15 distinct tasks
set in a few-shot learning environment across 54
languages. However, this evaluation framework
was not publicly available at the time of writing
this paper. OpenICL (Wu et al., 2023) is another
framework designed specifically for zero-shot or
few-shot learning setups. It incorporates various
strategies, such as random selection, heuristic meth-
ods (including BM25 (Robertson et al., 2009),
TopK (Liu et al., 2022), and VoteK (Hongjin et al.,
2022)), and a model-based approach, to select few-
shot examples. The OpenICL framework is im-
plemented under the assumption that users will
utilize HF datasets to load and evaluate models.
A prompt is an important part that serves as a
bridge between humans and LLMs. To explore
the research in this direction Zhu et al. (2023) de-
veloped the PromptBench framework for prompt
engineering. Eleuther-AI developed LM evaluation
Harness (Gao et al., 2021), which includes the im-
plementation of 200 tasks and supports multiple
models from the HF hub.

Customization ICL (shot)

Eval Package Dataset Task Models Zero Few

OpenAI evals8 Fixed ✓ Any ✓ ✓
LM Harness (Gao et al., 2021) HF ✓ HF ✓ ✓
OpenICL (Wu et al., 2023) HF ✓ HF, OpenAI ✓ ✓

LLMeBench (Ours) Custom ✓ Any ✓ ✓

Table 1: LLMs evaluation frameworks. HF: Hugging
Face

Compared to the aforementioned frameworks
(summarized in Table 1), the LLMeBench frame-

7https://github.com/openai/evals

https://github.com/lm-sys/FastChat
https://github.com/vllm-project/vllm/
https://github.com/openai/evals

work offers customization through custom dataset
loaders, tasks, and models. It also supports both
zero- and few-shot prompting. The caching mech-
anism provided by the LLMeBench framework is
a rarity among its counterparts, yet it is crucial
for time and cost savings, as well as facilitating
efficient post-processing enhancements to model
outputs without additional expenses.

6 Conclusions and Future Work

In this paper, we introduce LLMeBench, an open-
source framework designed to facilitate the LLM
benchmarking process. LLMeBench accelerates
evaluation of LLMs using pre-implemented generic
datasets, tasks and model providers. In addition, it
features a modular design that empowers users to
integrate (i) new tasks, (ii) datasets, and (iii) APIs
for models. The framework incorporates caching
mechanisms that effectively reduce time, costs, and
effort associated with task evaluations. Currently,
it includes predefined recipes covering 31 stan-
dard NLP tasks such as classification, translation,
question-answering, and semantic parsing. These
recipes can be readily extended to encompass novel
NLP tasks, datasets, and LLM models.

In future, we aim to further enhance the frame-
work by integrating a broader array of tasks and
languages. By embracing an open-source approach
and encouraging active community participation,
we anticipate its sustained growth through the in-
corporation of diverse tasks, enriched datasets,
and innovative models. Additional enhancements
under consideration encompass integrating cross-
validation datasets, and incorporating models fea-
turing varied configurations (such as distinct iter-
ations of BLOOM models). Furthermore, we are
actively developing more methods for few-shot se-
lections. Currently, our framework assumes seam-
less model access via APIs. We are committed
to enhancing accessibility by enabling users to ef-
fortlessly load and utilize both offline and online
models for inference purposes.

Limitations

The LLMeBench is currently limited to API calls,
whether they are local or remotely hosted. It
also operates under the assumption that the entire
dataset can fit into memory, which may not be
feasible for very large collections. Implementing
iterable loading could be a viable solution to this
issue, and is a feature that might be considered for

future development. Additionally, many datasets
come with cross-validation splits, a functionality
that the framework does not currently support.

Ethics Statement

Our framework incorporates publicly available
datasets and relies on external models. These mod-
els may produce non-factual or potentially harmful
content. Therefore, we encourage users to be aware
of their interaction with the models.

Acknowledgments

The contributions of M. Hasanain were funded by
the NPRP grant 14C-0916-210015, which is pro-
vided by the Qatar National Research Fund (a mem-
ber of Qatar Foundation).

References
Ahmed Abdelali, Hamdy Mubarak, Shammur Absar

Chowdhury, Maram Hasanain, Basel Mousi, Sabri
Boughorbel, Samir Abdaljalil, Yassine El Kheir,
Daniel Izham, Fahim Dalvi, Majd Hawasly, Nizi
Nazar, Yousseif Elshahawy, Ahmed Ali, Nadir Dur-
rani, Natasa Milic-Frayling, and Firoj Alam. 2024.
LAraBench: Benchmarking Arabic AI with Large
Language Models. In Proceedings of the 18th Confer-
ence of the European Chapter of the Association for
Computational Linguistics: Volume 1, Long Papers,
Malta. Association for Computational Linguistics.

Kabir Ahuja, Harshita Diddee, Rishav Hada, Milli-
cent Ochieng, Krithika Ramesh, Prachi Jain, Ak-
shay Nambi, Tanuja Ganu, Sameer Segal, Mohamed
Ahmed, Kalika Bali, and Sunayana Sitaram. 2023.
MEGA: Multilingual evaluation of generative AI.
In Proceedings of the 2023 Conference on Empir-
ical Methods in Natural Language Processing, pages
4232–4267, Singapore. Association for Computa-
tional Linguistics.

Akari Asai, Sneha Kudugunta, Xinyan Velocity Yu,
Terra Blevins, Hila Gonen, Machel Reid, Yulia
Tsvetkov, Sebastian Ruder, and Hannaneh Hajishirzi.
2023. BUFFET: Benchmarking large language mod-
els for few-shot cross-lingual transfer. arXiv preprint
arXiv:2305.14857.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wen-
liang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei
Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan
Xu, and Pascale Fung. 2023. A multitask, multilin-
gual, multimodal evaluation of ChatGPT on reason-
ing, hallucination, and interactivity. In Proceedings
of the 13th International Joint Conference on Nat-
ural Language Processing and the 3rd Conference
of the Asia-Pacific Chapter of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 675—-718, Indonesia. Association for Compu-
tational Linguistics.

https://doi.org/10.18653/v1/2023.emnlp-main.258

Alexander Borzunov, Dmitry Baranchuk, Tim Dettmers,
Maksim Riabinin, Younes Belkada, Artem Chu-
machenko, Pavel Samygin, and Colin Raffel. 2023.
Petals: Collaborative inference and fine-tuning of
large models. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 3: System Demonstrations), pages
558–568, Toronto, Canada. Association for Compu-
tational Linguistics.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Pe-
ter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg,
Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro,
and Yi Zhang. 2023. Sparks of artificial general in-
telligence: Early experiments with GPT-4. Technical
report, Microsoft Research.

Jaime Carbonell and Jade Goldstein. 1998. The use of
mmr, diversity-based reranking for reordering doc-
uments and producing summaries. In Proceedings
of the 21st annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 335–336.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Kaijie Zhu, Hao Chen, Linyi Yang, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, et al. 2023. A sur-
vey on evaluation of large language models. arXiv
preprint arXiv:2307.03109.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong
Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, and
Zhifang Sui. 2023. A survey on in-context learning.
arXiv preprint arXiv:2301.00234.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black,
Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff,
Jason Phang, Laria Reynolds, Eric Tang, Anish Thite,
Ben Wang, Kevin Wang, and Andy Zou. 2021. A
framework for few-shot language model evaluation.
Zenodo.

Amr Hendy, Mohamed Abdelrehim, Amr Sharaf,
Vikas Raunak, Mohamed Gabr, Hitokazu Matsushita,
Young Jin Kim, Mohamed Afify, and Hany Hassan
Awadalla. 2023. How good are GPT models at ma-
chine translation? a comprehensive evaluation. arXiv
preprint arXiv:2302.09210.

SU Hongjin, Jungo Kasai, Chen Henry Wu, Weijia Shi,
Tianlu Wang, Jiayi Xin, Rui Zhang, Mari Ostendorf,
Luke Zettlemoyer, Noah A Smith, et al. 2022. Selec-
tive annotation makes language models better few-
shot learners. In The Eleventh International Confer-
ence on Learning Representations.

Md Tawkat Islam Khondaker, Abdul Waheed,
El Moatez Billah Nagoudi, and Muhammad Abdul-
Mageed. 2023. GPTAraEval: A comprehensive eval-
uation of ChatGPT on Arabic NLP. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 220–247, Sin-
gapore. Association for Computational Linguistics.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, et al. 2022. Holistic evaluation of language
models. arXiv preprint arXiv:2211.09110.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, William B
Dolan, Lawrence Carin, and Weizhu Chen. 2022.
What makes good in-context examples for gpt-3?
In Proceedings of Deep Learning Inside Out (Dee-
LIO 2022): The 3rd Workshop on Knowledge Extrac-
tion and Integration for Deep Learning Architectures,
pages 100–114.

Basel Mousi, Nadir Durrani, and Fahim Dalvi. 2023.
Can LLMs facilitate interpretation of pre-trained lan-
guage models? In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3248–3268, Singapore. Associa-
tion for Computational Linguistics.

OpenAI. 2023. GPT-4 technical report. Technical re-
port, OpenAI.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3982–3992.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Re-
trieval, 3(4):333–389.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, et al. 2022. BLOOM: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

Neha Sengupta, Sunil Kumar Sahu, Bokang Jia,
Satheesh Katipomu, Haonan Li, Fajri Koto,
Osama Mohammed Afzal, Samta Kamboj, Onkar
Pandit, Rahul Pal, et al. 2023. Jais and jais-chat:
Arabic-centric foundation and instruction-tuned open
generative large language models. arXiv preprint
arXiv:2308.16149.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,

https://doi.org/10.18653/v1/2023.acl-demo.54
https://doi.org/10.18653/v1/2023.acl-demo.54
http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2303.12712
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.18653/v1/2023.emnlp-main.16
https://doi.org/10.18653/v1/2023.emnlp-main.16
https://doi.org/10.18653/v1/2023.emnlp-main.196
https://doi.org/10.18653/v1/2023.emnlp-main.196
http://arxiv.org/abs/2303.08774

Adam R Brown, Adam Santoro, Aditya Gupta, Adrià
Garriga-Alonso, et al. 2023. Beyond the imitation
game: Quantifying and extrapolating the capabili-
ties of language models. Transactions on Machine
Learning Research.

Zhenyu Wu, Yaoxiang Wang, Jiacheng Ye, Zhiyong
Wu, Jiangtao Feng, Jingjing Xu, and Yu Qiao. 2023.
OpenICL: An open-source framework for in-context
learning. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 3: System Demonstrations), pages 489–498,
Toronto, Canada. Association for Computational Lin-
guistics.

Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, Veselin Stoy-
anov, Greg Durrett, and Ramakanth Pasunuru. 2023.
Complementary explanations for effective in-context
learning. In Findings of the Association for Compu-
tational Linguistics: ACL 2023, pages 4469–4484,
Toronto, Canada. Association for Computational Lin-
guistics.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. arXiv preprint arXiv:2306.05685.

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen
Wang, Hao Chen, Yidong Wang, Linyi Yang, Wei
Ye, Neil Zhenqiang Gong, Yue Zhang, et al. 2023.
PromptBench: Towards evaluating the robustness of
large language models on adversarial prompts. arXiv
preprint arXiv:2306.04528.

https://aclanthology.org/2023.acl-demo.47
https://aclanthology.org/2023.acl-demo.47
https://doi.org/10.18653/v1/2023.findings-acl.273
https://doi.org/10.18653/v1/2023.findings-acl.273

	Introduction
	LLMeBench
	Model Provider module
	Dataset module
	Evaluation module
	Benchmarking Asset module
	Interaction

	Features
	Modularity
	Generality
	Prompts
	Caching
	Dataset Auto-Download
	Task Diversity
	Language-agnostic Framework
	Open-source Framework
	Deploying Local Model

	Evaluation of LLMeBench
	Related Work
	Conclusions and Future Work

