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Abstract

The recent development and success of Large
Language Models (LLMs) necessitate an evalu-
ation of their performance across diverse NLP
tasks in different languages. Although several
frameworks have been developed and made
publicly available, their customization capa-
bilities for specific tasks and datasets are of-
ten complex for different users. In this study,
we introduce the LLMeBench1 framework,
which can be seamlessly customized to eval-
uate LLMs for any NLP task, regardless of
language. The framework features generic
dataset loaders, several model providers, and
pre-implements most standard evaluation met-
rics. It supports in-context learning with zero-
and few-shot settings. A specific dataset and
task can be evaluated for a given LLM in less
than 20 lines of code while allowing full flex-
ibility to extend the framework for custom
datasets, models, or tasks. The framework has
been tested on 31 unique NLP tasks using 53
publicly available datasets within 90 experi-
mental setups, involving approximately 296K
data points. We open-sourced LLMeBench for
the community2 and a video demonstrating the
framework is available online.3

1 Introduction

The rapid advancement of sophisticated large lan-
guage models (LLMs), supported by in-context
learning (ICL) (Dong et al., 2023), has gained un-
precedented popularity among both the research
and development communities. The emergence
of such large models facilitated diverse applica-
tions (Mousi et al., 2023). Given their success,
a systematic evaluation and comparison against
state-of-the-art is important to accurately gauge the

*The contribution was made while the author was at the
Qatar Computing Research Institute.

1LLM effectiveness Benchmarking. Can be pronounced
as “lemme bench”.

2https://github.com/qcri/LLMeBench/
3https://youtu.be/9cC2m_abk3A
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Figure 1: The architecture of the LLMeBench frame-
work. The dotted boxes represent the core implemented
modules of the architecture. Customization for new
tasks, datasets, and models can be done on Dataset,
Model Provider, Evaluation, and Asset modules.

potential of LLMs. A comprehensive evaluation
allows understanding of the strengths and weak-
nesses of these models; guides us towards better
human-LLMs interactions through prompting; and
facilitates their broader applicability in different
scenarios, especially in domains where safety and
security are paramount concerns (e.g., healthcare,
financial institutes) (Chang et al., 2023; Zhao et al.,
2023; Zhu et al., 2023).

Numerous initiatives were launched to compre-
hensively assess the performance of LLMs on stan-
dard NLP tasks. The HELM project (Liang et al.,
2022) conducted a thorough evaluation of LLMs
for English, spanning various metrics and scenar-
ios. Additionally, the BIG-Bench initiative (Srivas-
tava et al., 2023) introduced an extensive evalua-
tion of 214 tasks, even encompassing languages
with limited resources. Notably, evaluations have
been carried out on models like GPT2.5 (Rad-
ford et al., 2019), ChatGPT (OpenAI, 2023), and
BLOOM (Scao et al., 2022) within multitask, mul-
tilingual, and multimodal settings. These evalua-
tions were further extended to low-resource lan-
guages (Bang et al., 2023; Ahuja et al., 2023;
Hendy et al., 2023; Khondaker et al., 2023).

Evaluating LLMs across diverse tasks often en-
tails challenges related to costs, effort, and time

https://github.com/qcri/LLMeBench/
https://youtu.be/9cC2m_abk3A


due to complexities like handling API calls, task
integration, dataset inclusion, evaluation measures,
and potentially hosting datasets on public platforms
(e.g., Hugging Face (HF)). To overcome these limi-
tations, in this study, we introduce “LLMeBench”,
which facilitates a comprehensive evaluation of
these LLMs through a seamless and flexible imple-
mentation. The proposed framework, as depicted in
Figure 1, empowers users to assess various LLMs
while simplifying the integration of custom tasks,
datasets, and evaluation metrics.

A few evaluation frameworks have emerged
to facilitate extensive benchmarking of LLMs.
Among these are OpenAI evals,4 LM Harness (Gao
et al., 2021), and OpenICL (Wu et al., 2023). Each
framework offers functionalities tailored to specific
requirements. For instance, OpenICL focuses on
few-shot learning techniques. Our contribution,
LLMeBench, stands out by emphasizing a user-
friendly, plug-and-play design, that can seamlessly
integrate into existing experimental workflows, set-
ting it apart from other alternatives. LLMeBench’s
uniqueness lies in the following features:

• Supports several generic data loaders
(e.g., HF datasets), pre-implements several
model providers (such as OpenAI and
HF inference APIs for remote execution,
and FastChat (Zheng et al., 2023) and
Petals (Borzunov et al., 2023) for local
deployments), and supports all standard tasks
and evaluations, such as classification, regres-
sion, etc. Evaluating a new task/dataset/model
can be done in as few as 20 lines.

• Allows the user to create their own data loader,
connecting to their local server, ensuring data
privacy and security.

• Provides users with the flexibility to design
diverse tasks, allowing customization of data
input/output formats and evaluation criteria.

• Supports zero- and few-shot learning
paradigms with ∼300 zero-/few-shot prompts
serving as a valuable community resource.

• Enables automatic selection of few-shot exam-
ples from a user-defined train/dev set using a
maximal marginal relevance-based approach.

• Implements an efficient caching mechanism
to prevent repeated API calls, resulting in cost
savings and resolution of time-out issues.

• Offers extensive logging and caching capabil-
ities, allowing iterative model outputs post-

4https://github.com/openai/evals

class ModelBase(object):
@abstractmethod
def prompt(self, **kwargs):

''' Call to model API '''
pass

@abstractmethod
def summarize_response(self, response):

'''Extract response from model output'''
pass

Listing 1: Abstract class for implementing a new Model.

processing.
• Provides an auto-download mechanism for

public datasets, accelerating experimentation.
• Includes 31 tasks recipes featuring different

model providers. Rigorously tested with 53
datasets associated with 12 languages.

Furthermore, LLMeBench is an open-source, user-
friendly, and adaptable comprehensive benchmark-
ing framework for LLMs. It empowers both ex-
perts and non-experts to assess conventional and
unique NLP tasks, enhancing comprehension of the
models’ capabilities and their applicability across
standard and novel tasks.

2 LLMeBench

In Figure 1, we provide the architecture of the
LLMeBench framework. To ease the burden on
users in implementing common elements across
experimental setups, which are not specific to a
task, the architecture was designed to support a
uniform format for both input and intermediate out-
puts. This was achieved by employing a pipeline
that utilizes key-value dictionaries to seamlessly
pass data. The framework incorporates four fun-
damental modules, discussed below. The process
starts with a Dataset, where each input sample Si

is routed to the Asset module. Within this module,
a prompt is created and then passed to the Model
Provider for processing. The model’s response is
then funneled back to the Asset module for post-
processing. As the processing of all input samples
and the generation of corresponding responses con-
clude, the Evaluation module takes on the task of
computing evaluation metrics. The whole process
of intercommunication is overseen by a Benchmark
Driver. Throughout these processes, the inputs,
processed data, and the intermediate outputs are
cached for re-use and quick experimentation.

2.1 Model Provider module

A Model Provider abstracts away all model-
specific communication and aims to set the defaults

https://github.com/openai/evals


class DatasetBase(ABC):
@abstractmethod
def metadata(self):

''' Returns metadata for the dataset. '''
pass

@abstractmethod
def get_data_sample(self):

''' Returns a single dictionary, with
at least the following keys:
'input': <input-instance>
'label': <label> '''

pass
@abstractmethod
def load_data(self, data_path):

''' Returns a list of dictionaries, with
at least the following keys:
'input': <input-instance>
'label': <label> '''

pass

Listing 2: Abstract class for implementing a new
Dataset.

class TaskBase(ABC):
@abstractmethod
def evaluate(self, true_labels,

predicted_labels):
pass

Listing 3: Abstract class for implementing a new
Evaluation.

for maximum reproducibility (for instance assign
temperature value to zero by default). The frame-
work currently supports OpenAI’s API, the HF In-
ference API, as well as FastChat and Petals for
local deployments. Defining a new LLM model is
straightforward by extending the ModelBase class.
The initial process entails configuring essential pa-
rameters for the model setup, including factors like
temperature, top_p, etc. Furthermore, it requires
the implementation of two abstract methods (shown
in Listing 1): prompt – manages the invocation of
the model API based on the input prompt; and
summarize_response – extracts a summary of the
response from raw model output.

2.2 Dataset module

Similar to a Model provider, a Dataset imple-
mentation aims to abstract dataset-specific code,
such as loading, pre-processing, and formatting of
samples. The framework comes with four generic
data loaders, including Hugging Face, CSV, and
JSON datasets. A custom dataset can be easily
implemented by extending the DatasetBase class.
When defining a new dataset, the user is required
to implement at least three methods (depicted in
Listing 2). The first, metadata, is designed to pro-
vide comprehensive metadata such as a citation or

def config():
return {

'dataset':ExampleDataset,'dataset_args':{},
'task':ExampleTask,'task_args':{},
'model':OpenAIModel,'model_args':{},
'general_args':{}}

def prompt(input_sample):
''' Construct and return the prompt following

the model's corrsponding template'''
def post_process(response):

''' Apply custom post-processing on response
and return extracted model predicition'''

Listing 4: Methods to implement in the Asset module.

reference to the source of the dataset, its down-
load link, and the languages it covers. The sec-
ond function to be implemented in this module is
load_data, which should define a data loader ca-
pable of returning a list S comprising the samples
from the dataset, given the user-specified dataset
path. Lastly, get_data_sample should be defined
to return a Python dictionary representing a single
sample Si extracted from the dataset.

2.3 Evaluation module

The Evaluation module aims to compute metrics
and consolidate the results for a task. The frame-
work comes with built-in support for popular task
types such as Classification and Regression and is
easily extendible to any custom metric by inher-
iting from the TaskBase class. A custom imple-
mentation can define an evaluate function for a
task with specific evaluation code and metrics (see
Listing 3). The function is passed two lists: the
predicted labels, and true or gold labels. Its pri-
mary objective is to yield a user-defined Python
dictionary comprising key-value pairs representing
the outcomes of the evaluation (e.g., {“Accuracy”:
accuracy value}).

2.4 Benchmarking Asset module

The Asset module represents a benchmarking
experiment, utilizing all the modules defined in
LLMeBench as can be seen in code snippet List-
ing 4. Within this module, the user should pro-
vide full configuration for the experiment, which
includes specifying the Dataset, Model, and
Evaluation modules. The module also enables
passing model and dataset parameters.

The Asset module must also implement the
prompt function, which constructs the actual
prompt to pass to the Model, based on the input
sample. For scenarios involving few-shot learning,
the Asset module is provided with k examples to



use in prompt construction. These examples are
chosen by the framework from a training dataset
specified by the user, where k is a parameter con-
trolled by the user.

Finally, the post_process function is required
to be implemented to post-process response from
the model. This step is crucial because the output
produced by the Model is tailored to the particular
model and the prompt used, leading to potential
variations across benchmarking experiments.

2.5 Interaction
Once the aforementioned modules are imple-
mented, running a benchmarking experiment
becomes a straightforward task, accomplished
through a single command that provides access
to various adjustable parameters. The package au-
tomatically identifies the Asset to run based on
wildcard search using the provided asset name. Ad-
ditionally, the package determines whether to acti-
vate the few-shot setup when the number of shots
is specified as a parameter (--n_shots <k>). Fur-
thermore, the package supports swift testing of the
benchmarking asset by executing it on a small num-
ber of n (--limit <n>) samples, which limits the
run to the first n samples from the dataset. An
example of the command is provided below.

$ python -m llmebench --filter '*AssetName*'
--n_shots k --limit n --ignore_cache
<benchmark-dir> <results-dir>

3 Features

LLMeBench features a generic framework that
serves a broad range of tasks and models in dif-
ferent learning settings (zero-/few-shot) to evaluate
model performance. It enables scalable and rigor-
ous evaluation across diverse tasks and languages
while offering simplicity of implementation and
flexibility in customization.

3.1 Modularity
The LLMeBench framework, as shown in Figure
1, follows loosely-coupled design principles, ef-
fectively separating the data loader, models, and
evaluation components. These components interact
through a Benchmark Driver, ensuring a modular
and flexible architecture.

3.2 Generality
The framework is designed to offer generality, with
effortless customization of tasks, data, and mod-

els. The framework comes with several generic
data loaders such as Hugging Face datasets. Addi-
tionally, since users have the ability to create their
own data loaders, the framework can support any
standard data format. At the time of writing this pa-
per, we have conducted tests with different formats
including TSV, CSV, JSON, and JSONL.

In terms of tasks, the framework demonstrates
the capability to handle a diverse array of token and
sequence classification tasks. Figure 2 displays the
implemented task types, with built-in support for
all standard generic tasks. Additionally, any new
custom task can be seamlessly incorporated.

The framework also accommodates various
types of models, encompassing both open and
closed models, each with its own API-based op-
tions. For closed models, users can acquire API
keys and endpoints from hosting providers. Mean-
while, open models can be hosted on in-house
infrastructure or any accessible hosting service
through APIs. We evaluated such an integration
using BLOOMZ 176B 8bit version and Jais-13b
(32 bit) (Sengupta et al., 2023), hosting it within
our in-house infrastructure using Petals (Borzunov
et al., 2023) and FastChat. Overall, the framework
offers a high level of generality and can be readily
applied and adapted to a wide range of use cases
and research scenarios.

3.3 Prompts
LLMeBench is designed to support both zero-
and few-shot learning setups. The instructions in
prompts can be written in any language of interest.

Zero-shot prompts provide natural language in-
structions describing the task and expected output.

Few-shot prompts embed a small number of
examples to the natural language instructions for
the particular task. The framework utilizes user-
defined, task-specific training set to automatically
select few-shot examples. Various strategies ex-
ist for examples selection. Among these, we have
implemented maximal marginal relevance-based
(MMR) (Carbonell and Goldstein, 1998) selec-
tion, which has demonstrated success in previous
work by Ye et al. (2023). The approach com-
putes the similarity between a test example and
the example pool (e.g., training dataset) and selects
k examples (shots) that are both relevant and di-
verse. We apply the MMR technique on top of em-
beddings obtained from the multilingual sentence-
transformers (Reimers and Gurevych, 2019). How-
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Figure 2: Summary and examples of the 53 datasets, 31 tasks, 4 model providers, 5 tested models and metrics
currently implemented and validated in LLMeBench.

ever, users also have the flexibility to utilize any
custom embedding model.

We have designed a highly efficient process to
extract embeddings and compute few-shot exam-
ples for each test sample. Specifically, it pre-selects
few-shot examples for each test sample during the
initial loading stage. This design effectively elim-
inates the need to apply and compute the MMR
score when making API calls, thus enhancing the
system’s overall efficiency.

The LLMeBench framework includes ∼300 de-
signed prompts for zero-shot and few-shot setups
that have been validated across a variety of NLP
tasks and datasets (see Section 4). This collection
serves as a strong starting point for the community
and expedite prompt engineering research.

3.4 Caching

One of the significant challenges when accessing
APIs is managing timeout issues. The necessity to
rerun experiments involving API calls not only re-
quires additional effort but also increases costs. To
address this problem, we have developed a caching
mechanism, allowing users to bypass making API
calls for samples that have already been success-
fully processed. Specifically, we save all intermedi-
ate outputs when processing a data sample, includ-
ing the generated prompt, the raw model response
and the post-processed output. On a re-run, sam-
ples that have model responses in the cache do not
actually access the API, but rather load the cached
response. Furthermore, this caching mechanism
plays a vital role in enhancing the post-processing
of the models’ output, as it can be performed re-
peatedly without having to call the API. This fea-
ture is important, given that different models yield
various types of outputs, requiring improved post-

processing to align the output accurately with the
reference label. To further counter expected time-
out and rate limitation issues with APIs, the frame-
work also applies a user-configurable wait-and-
retry mechanism. This mechanism retries API calls
in case of failure, maximizing the chance of receiv-
ing a successful response.

3.5 Dataset Auto-Download

The framework comes with support for automatic
downloading and caching of publicly available
datasets, taking care of extracting and linking them
correctly for any Asset that requires it. This allows
a new user to quickly begin experimenting with and
evaluating an existing dataset without the need to
manually acquire it first.

3.6 Task Diversity

The framework currently supports and includes a
diverse set of tasks, covering a broad spectrum that
ranges from word-level tasks to those involving
single sentences, sentence pairs, question-answer
pairs, and more. The range of tasks covers various
NLP research tracks, as can be seen in Figure 2.

3.7 Language-agnostic Framework

The LLMeBench framework is language-agnostic.
As of now, tasks for 12 languages have been incor-
porated, a number that will continuously grow as a
result of our ongoing efforts and, ideally, with the
support of the community.

3.8 Open-source Framework

We made LLMeBench accessible to the community
by releasing it as open-source. This will also en-
able the continued growth and development of the
framework within the community.



3.9 Deploying Local Model

For deploying local models, we interface
LLMeBench with FastChat framework (Zheng
et al., 2023). The latter is an open-source project 5

for serving LLMs with a fast-growing user com-
munity. Custom chat templates of popular and new
LLMs are rapidly added to the framework. This
allows a proper use of instruct-tuned LLMs in in-
ference mode, unlike other popular benchmarking
frameworks such Eval-Harness (Gao et al., 2021),
which do not use chat templates. This can lead
to a mismatch in the expected inputs of instruc-
tion tuned models, and put at disadvantage several
LLMs, especially the ones with small sizes. Our
approach for local deployment solves this issue
by relying on FastChat. Huggingface models can
be easily deployed in three steps after installing
FastChat python package: 1) Running a model con-
troller which plays a role of interfacing between
API and model calls. 2) Running a model worker
for each loaded model which manages the model
in GPU and executes the prompts and returns to
responses to the model worker. It is possible to
load model worker with vLLM 6 enabling prompt
batching for an efficient and fast inference (Kwon
et al., 2023). 3) Running an API server which
provides a compatible interface with to OpenAI
API. The local address and port of the API are
set in LLMeBench via FASTCHAT_* environment
variables.

4 Evaluation of LLMeBench

The framework has already been used across a
variety of Arabic NLP tasks and datasets (Abde-
lali et al., 2024). This involved extensive experi-
mentation using zero- and few-shot learning with
state-of-the-art large language models, including
GPT-3.5-Turbo, GPT-4, and the 8-bit version of the
BLOOMZ 176B model. In Figure 2, we provide
a summary of the tasks, datasets, and models that
have been implemented and evaluated. Given that
our assessment of the framework was based on the
current state-of-the-art NLP tasks and datasets, we
implemented task- and dataset-specific metrics re-
ported in the literature. Overall, it has been used
to evaluate 31 NLP tasks, which were categorized
based on ACL tracks, 53 datasets, and different
model providers within 2 learning setups. All the
task recipes are available within the framework.

5https://github.com/lm-sys/FastChat
6https://github.com/vllm-project/vllm/

5 Related Work

Efforts to assess the performance of LLMs on stan-
dard NLP tasks have been underway since the
launch of ChatGPT. Notable studies, such as those
by Bubeck et al. (2023), Bang et al. (2023), Ahuja
et al. (2023), and Hendy et al. (2023), have con-
ducted large-scale experiments considering multi-
linguality, multimodality, low-resource languages,
and a wide range of datasets and tasks.

Such large-scale evaluations require off-the-
shelf and easy-to-use solutions to measure the per-
formances of LLMs for a variety of NLP-related
tasks. To evaluate OpenAI’s models, the com-
pany developed the EVALs7 package, which re-
quires the dataset to be prepared in JSON format
using a predefined template. Asai et al. (2023)
developed an evaluation framework as a part of
their cross-lingual benchmarking effort. This com-
prehensive framework includes 15 distinct tasks
set in a few-shot learning environment across 54
languages. However, this evaluation framework
was not publicly available at the time of writing
this paper. OpenICL (Wu et al., 2023) is another
framework designed specifically for zero-shot or
few-shot learning setups. It incorporates various
strategies, such as random selection, heuristic meth-
ods (including BM25 (Robertson et al., 2009),
TopK (Liu et al., 2022), and VoteK (Hongjin et al.,
2022)), and a model-based approach, to select few-
shot examples. The OpenICL framework is im-
plemented under the assumption that users will
utilize HF datasets to load and evaluate models.
A prompt is an important part that serves as a
bridge between humans and LLMs. To explore
the research in this direction Zhu et al. (2023) de-
veloped the PromptBench framework for prompt
engineering. Eleuther-AI developed LM evaluation
Harness (Gao et al., 2021), which includes the im-
plementation of 200 tasks and supports multiple
models from the HF hub.

Customization ICL (shot)

Eval Package Dataset Task Models Zero Few

OpenAI evals8 Fixed ✓ Any ✓ ✓
LM Harness (Gao et al., 2021) HF ✓ HF ✓ ✓
OpenICL (Wu et al., 2023) HF ✓ HF, OpenAI ✓ ✓

LLMeBench (Ours) Custom ✓ Any ✓ ✓

Table 1: LLMs evaluation frameworks. HF: Hugging
Face

Compared to the aforementioned frameworks
(summarized in Table 1), the LLMeBench frame-

7https://github.com/openai/evals

https://github.com/lm-sys/FastChat
https://github.com/vllm-project/vllm/
https://github.com/openai/evals


work offers customization through custom dataset
loaders, tasks, and models. It also supports both
zero- and few-shot prompting. The caching mech-
anism provided by the LLMeBench framework is
a rarity among its counterparts, yet it is crucial
for time and cost savings, as well as facilitating
efficient post-processing enhancements to model
outputs without additional expenses.

6 Conclusions and Future Work

In this paper, we introduce LLMeBench, an open-
source framework designed to facilitate the LLM
benchmarking process. LLMeBench accelerates
evaluation of LLMs using pre-implemented generic
datasets, tasks and model providers. In addition, it
features a modular design that empowers users to
integrate (i) new tasks, (ii) datasets, and (iii) APIs
for models. The framework incorporates caching
mechanisms that effectively reduce time, costs, and
effort associated with task evaluations. Currently,
it includes predefined recipes covering 31 stan-
dard NLP tasks such as classification, translation,
question-answering, and semantic parsing. These
recipes can be readily extended to encompass novel
NLP tasks, datasets, and LLM models.

In future, we aim to further enhance the frame-
work by integrating a broader array of tasks and
languages. By embracing an open-source approach
and encouraging active community participation,
we anticipate its sustained growth through the in-
corporation of diverse tasks, enriched datasets,
and innovative models. Additional enhancements
under consideration encompass integrating cross-
validation datasets, and incorporating models fea-
turing varied configurations (such as distinct iter-
ations of BLOOM models). Furthermore, we are
actively developing more methods for few-shot se-
lections. Currently, our framework assumes seam-
less model access via APIs. We are committed
to enhancing accessibility by enabling users to ef-
fortlessly load and utilize both offline and online
models for inference purposes.

Limitations

The LLMeBench is currently limited to API calls,
whether they are local or remotely hosted. It
also operates under the assumption that the entire
dataset can fit into memory, which may not be
feasible for very large collections. Implementing
iterable loading could be a viable solution to this
issue, and is a feature that might be considered for

future development. Additionally, many datasets
come with cross-validation splits, a functionality
that the framework does not currently support.

Ethics Statement

Our framework incorporates publicly available
datasets and relies on external models. These mod-
els may produce non-factual or potentially harmful
content. Therefore, we encourage users to be aware
of their interaction with the models.
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