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Domain Adaptation

• Preserve lexical choice, writing style, reordering 
of In-domain genre

• Making best use of the additional general/out-
domain data to improve the performance of the 
system on in-domain task

• Model Weighting

• Data Selection

ID



Model Weighting

• Skew the probability distribution towards ID

– Concatenate ID data multiple times

– Weighted interpolation, instance weighting 

– Domain indicator features
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Data Selection

• Select pseudo-domain data from the out-domain data
– Train system on In-domain + Concatenation

• Train in and out-domain models 
– Select data based on cross-entropy difference

• Pros
– Important for speed and memory (SAC Demo)

• Cons
– Cumbersome to find optimal threshold

– System cannot fallback to general domain



NNJM Model

• Neural Network Joint Model – NNJM (Devlin et. al 
2014: ACL Best Paper)

• Augments language model with source context window

الحمل   الزائد   ل�ختيار   مشکلۃعن   

About the problem of choice overload

• p(problem | the, About, <s> الحمل ,مشکلۃ ,عن)
– Typically 14-gram model (9 source words + 5 target) is used



Why NNJM?

• Handles source and target contextual 
dependencies across phrasal boundaries

• The n-gram units capture reordering patterns

• Capture semantic dependencies and 
generalized information

• Gave an improvement of +3.0 BLEU points on 
top of top ranked Arabic-English NIST system

• Already implemented in Moses and part of 
SOTA pipeline



Motivation

• Hypothesis: An NNJM trained on plain 
concatenation of in- and out-domain data is 
suboptimal

• Can we learn model in a way that it prefers in-
domain?
– NDAM: Instance weighting by regularizing the loss 

function

– NFM: Fusion of in- and out-domain models

• Can we do data selection using NNJM?



NNJM Model



NDAM Models – EMNLP ‘16

• NNJM Model trained on plain concatenation 
might be suboptimal

• We train model on weighted concatenation

– NDAM-v1: Drift towards out-domain model is 
controlled using regularizer based on in-domain 
model

– NDAM-v2: Regularizer is based on cross entropy 
difference of in- and out-domain model



NDAM Models – EMNLP ‘16

• NDAM-v1:

• NDAM-v2:



Technical Issues

• Handling OOVs
– Probability of sequences containing OOV is high 

according to the ID model

– Mark out-domain OOVs  by OOV_o

• Vanishing and Exploding Gradients 
– Gradient clipping [+5,-5]

• NCE to avoid repetitive softmax computation
– For each training instance, sample 100 samples 

– Unigram versus Uniform

– NCE loss is defined to discriminate from true instance 
from noisy ones



Fusion Models (COLING’ 2016)

• Motivation: Interpolation of language model, phrase-
tables by minimizing perplexity

• Interpolating models to minimize perplexities on tune

• NFM: Train in- and out-domain models separately, train 
a composite model 

– Use in-domain data to back-propagate errors 

– Adjust the weights of embedding and outer layers



Fusion Model



Data and Settings

• Language Pairs: Arabic, German

• Data: In-domain: TED, Out-domain: UN (AR), EP, CC, News

• NNJM Settings: Vocab [20K, 40K], word vector size D 150, 
hidden layer 750, SGD with NCE using 100 noise samples

• Baseline: Moses with SOTA features and settings

• Tune IWSLT dev and test-10-, Test IWSLT[11-13]



Results (Adapting NNJM Models)



Results (Phrase-table Adaptation)



Results (Data Selection)



Summary

• Novel Domain Adaptation Models based on the 
NNJM model

– NDAM models: regularizing loss function based on 
cross-entropy difference

– Fusion Models: combining in- and out-domain model 
through back-propogation

• Applied known techniques

– Linear interpolation

– Log-linear interpolation

– Data Selection using NNJM



Summary

• Fusion models performed best among the 

methods also beating phrase-table adaption

• We found methods to be complementary

– Gains on top of phrase-table adaptation and data 

selection
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