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Abstract

Neuron analysis provides insights into how
knowledge is structured in representations and
discovers the role of neurons in the network. In
addition to developing an understanding of our
models, neuron analysis enables various appli-
cations such as debiasing, domain adaptation
and architectural search. We present NeuroX, a
comprehensive open-source toolkit to conduct
neuron analysis of natural language processing
models. It implements various interpretation
methods under a unified API, and provides a
framework for data processing and evaluation,
thus making it easier for researchers and practi-
tioners to perform neuron analysis. The Python
toolkit is available at https://www.github.
com/fdalvi/NeuroX.1

1 Introduction

Interpretation of deep learning models is an essen-
tial attribute of trustworthy AI. Researchers have
proposed a diverse set of methods to interpret mod-
els and answered questions such as: what linguistic
phenomena are learned within representations, and
what are the salient neurons in the network. For in-
stance, a large body of work analyzed the concepts
learned within representations of pre-trained mod-
els (Liu et al., 2019; Tenney et al., 2019; Rogers
et al., 2020; Belinkov et al., 2020; Dalvi et al.,
2022) and showed the presence of core-linguistic
knowledge in various parts of the network. Several
researchers have carried out this interpretation at
a fine-grained level of neurons e.g. Durrani et al.
(2020); Torroba Hennigen et al. (2020); Antverg
and Belinkov (2021) highlighted salient neurons
w.r.t any linguistic property in the model and Lund-
berg and Lee (2017); Dhamdhere et al. (2018);
Janizek et al. (2020) identified a set of neurons
responsible for a given prediction. At a broader
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Figure 1: Simplified overview of Neuron Interpretation.
Given an annotated text corpus, neuron interpretation
methods aim to provide a ranking of neurons in a model
w.r.t to their importance to one or more annotated prop-
erties (for e.g. "Noun" in this instance)

level, these methods can be categorized into repre-
sentation analysis, neuron analysis and feature attri-
bution methods respectively. Sajjad et al. (2022a)
provides a comprehensive survey of these methods.

A number of toolkits have been proposed to fa-
cilitate the interpretation of deep learning models.
For instance, diagNNose (Jumelet, 2020) provides
representation analysis and attribution methods.
LIT (Tenney et al., 2020) can be used to visual-
ize attention and counterfactual explanations using
feature attribution methods. Captum (Kokhlikyan
et al., 2020) integrates a large set of attribution
methods under a consistent API. All these tools
facilitate the interpretability of models. However,
due to the diverse ways of interpreting models, they
do not cover all sets of methods. Specifically, most
of the toolkits do not cover neuron interpretation
methods that discover and rank neurons with re-
spect to a concept.

Neuron interpretation analyzes and gives insight
into how knowledge is structured within a repre-
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Figure 2: Overall design and architecture of the NeuroX toolkit, with references to their corresponding Python
modules in the white boxes.

sentation. It discovers neurons with respect to a
concept and provides a fine-grained interpretation
of deep models. Figure 1 provides a simplified
high-level overview of how neuron interpretation
methods operate. Given a model, some text and
annotations, these methods output a ranking of neu-
rons with respect to their importance to one or more
annotated concepts. The ability to interpret neu-
rons enables applications such as debiasing mod-
els, controlling predictions of the models on the
fly (Bau et al., 2019; Suau et al., 2020), neural
architectural search (Dalvi et al., 2020), studying
fine-tuned models (Durrani et al., 2021) and do-
main adaptation (Gu et al., 2021). To make neuron
interpretation more accessible, we propose NeuroX,
an open-source Python toolkit to facilitate neuron
interpretation of deep natural language processing
(NLP) models.

NeuroX consists of three major components: i)
data processing, ii) interpretation and iii) analy-
sis. The data processing implements various ways
to generate and upload data for analysis, extract
activations and save them efficiently. The interpre-
tation module implements six interpretation meth-
ods belonging to two different classes of methods.
The analysis module brings together qualitative and
quantitative methods to evaluate and visualize the
discovered neurons. Figure 2 shows these compo-
nents and how they interact with each other. We
describe them in detail in the following sections.
The toolkit itself is compatible with HuggingFace’s

transformers (Wolf et al., 2020) API and supports
all transformer-based models.

To the best of our knowledge, NeuroX is the first
toolkit that enables the interpretation of deep NLP
models at the neuron level. It serves as a back-
bone to rapidly test new interpretation techniques
using a unified framework and enables comparison
and consistent evaluation of these techniques. The
toolkit is easy to install and run:

pip install neurox

with detailed documentation is available at https:
//neurox.qcri.org/docs, including tutorials
that showcase various capabilities of the toolkit
to quickly get started with neuron interpretation.

2 Data Processing

The data module is responsible for preparing all
the inputs for the Interpretation and Analysis mod-
ules, as well as filtering the datasets to probe and
interpret specific phenomena. As shown in Figure
2, the required inputs to the toolkit are: i) a model
and ii) a text corpus annotated towards the prop-
erty of interest (e.g. data annotated towards toxic
word spans in the hate-speech-detection task). The
interpretation module can then extract a neuron
ranking, highlighting the saliency of the neurons in
the model that capture this phenomenon. If annota-
tions are not available, an annotation helper module
is made available in the toolkit that can annotate to-
kens based on arbitrary phenomena e.g. suffixation,
lexical properties, or using pre-existing vocabular-
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Tokenizer Input Sentence Tokenized Sentence

bert-base-cased "A good-looking house" "[CLS] A good - looking house [SEP]"
gpt2 "A good-looking house" "A Ä good - looking Ä house"

bert-base-cased "Mauritians" "[CLS] ma ##uri ##tian ##s [SEP]"
gpt2 "Mauritians" "M aur it ians"

flaubert/flaubert_base_cased "sport qu’ on" "<s> sport</w> qu</w> ’</w> on</w> </s>"
flaubert/flaubert_base_cased "sport qu’" "<s> sport</w> qu’</w> </s>"

Table 1: Tokenizers from different models tokenize the same input very differently, sometimes adding special
characters at the first subword, or prefixing all subwords except the first subword etc. Sometimes the same model
tokenizes the same word (qu’) differently depending on the context.

ies. Below we describe the various components of
the data module in detail.

2.1 Representation Extraction

Central to any neuron interpretation method are the
neuron activations themselves, i.e. the magnitude
of a neuron for any given input. While modern
frameworks such as PyTorch and Tensorflow facili-
tate the extraction of intermediate neuron values for
specific models via hooks, it is non-trivial to enable
this generically, as the code to extract activations
from specific network components (e.g. layers) is
highly dependent on the underlying model imple-
mentation. NeuroX implements generic extractors
for specific popular frameworks and provides a
highly-configurable PyTorch-based extractor.

Framework Specific Extractors An example of
a framework specific extractor is one for Hugging-
Face’s transformers models. The transformers li-
brary exposes the intermediate output at each layer,
which can then be used to access each neuron’s
(layer output) activation for any given input.

Generic Extractors Apart from framework spe-
cific extractors, the toolkit offers a generic extrac-
tor for PyTorch model, which runs as a two step
process. In the first step, the toolkit maps out the
architecture of the given model, and provides the
user a json file that contains all the components
of the model. The user can then choose exactly
which of the components they need the activations
for, which are then saved in the second step.

Segmentation and De-Segmentation A unique
problem to text and NLP models is that of tokeniza-
tion. For instance, every transformers model has
an associated tokenizer, that breaks the tokens in
an input sentence into subwords depending on the
model’s vocabulary. The same input can be tok-
enized differently by each model. To get a neuron’s
activation for a given input token regardless of tok-

enization, NeuroX runs a detokenization procedure
to combine the activation values on subwords into
a single activation value. Table 1 shows examples
of how a sentence (and sometimes a word) can be
tokenized differently depending on the underlying
tokenizer and context. The toolkit also offers the
user a choice on how the activation values across
subwords should be combined such as first or
last subword or average across subwords.

2.2 Annotation Helper

While annotations are available for some linguistic
properties, labeled data sets may not always be
available. To carry out an interpretation in such
a scenario, NeuroX offers a helper module that
can label the data with a positive or negative label
per token. data.annotate.annotate_data can
annotate each token positively in three different
ways:

1. Preset Vocabulary: The token exists in the
given vocabulary.

2. Regular expression: The token matches with
the given regular expression. For example, the
expression ˆ\d+$ annotates all tokens that are
composed of digits as positive samples.

3. Python function: A function that returns
a binary True/False for a given token. Ar-
bitrary computation can be done inside this
function. For instance, lambda token:
token.endswith("ing") annotates all to-
kens ending with -ing positively.

3 Interpretation Module

The central module in the NeuroX toolkit is the
interpretation module, which provides imple-
mentations of several neuron and representation
analysis methods. Table 2 shows a list of methods
that are currently implemented in the toolkit, along



Interpretation
Method Description

Supports
Repre-
sentation
Analysis

Requires
Train-
ing

Supports
multi-
class
analysis

Linear Probe Class of probing methods that use a linear classifier for neuron
analysis. Specifically, the implementation provides probes intro-
duced by

• Radford et al. (2019) (Classifier with L1 regularization)

• Lakretz et al. (2019) (Classifier with L2 regularization)

• Dalvi et al. (2019a) (Classifier with Elastic Net regulariza-
tion)

Yes Yes Yes

Probeless A corpus-based neuron search method that obtains neuron rank-
ings based on an accumulative strategy, introduced by Antverg
and Belinkov (2021)

No No Yes

IoU Probe A mask-based method introduced by Mu and Andreas (2020) that
computes Intersection over Union between tokens representing
a specific concept and tokens that have high activation values for
specific neurons

No No No

Gaussian Probe A multivariate Gaussian based classifier introduced by Tor-
roba Hennigen et al. (2020) that can probe for neurons whose
activation values follow a gaussian distribution.

Yes Yes Yes

Mean Select A corpus-based neuron ranking method introduced by Fan et al.
(2023) that derives neuron importances by looking at activation
values across contexts where a concept appears.

No No Yes

Table 2: An overview of the neuron interpretation methods currently implemented in the NeuroX toolkit.

with details of what each method’s implementation
supports.

The method implementations follow a consis-
tent API to make it easy for the user to switch
between them. Specifically, each method at least
implements the following functions:

• method.train_probe: This function takes in
the pre-processed data (extracted activations,
prepared labels etc) as described in section 2,
and returns back a probe that can be used to
perform neuron analysis. Some methods do
not require any training, in which case this
function just stores the input for future use.

• method.evaluate_probe: This function
takes an evaluation set and returns the perfor-
mance of the probe on the given set. The eval-
uation set itself can be a control task, and the
output score can be computed using several
pre-implemented metrics. Section 4 discusses
the various evaluation metrics in detail.

• method.get_neuron_ordering: This func-
tion returns an ordering/ranking of all the neu-
rons being analyzed with respect to their im-
portance to the task at hand. For instance, if
the probe was trained to analyze Nouns, this

function will return a sorted list of neurons
(by importance) that activate for Nouns in the
given dataset.

The interpretation methods themselves may be
able to probe multiple properties at the same time
(multi-class probing), or only a single concept (bi-
nary probing). Additionally, some interpretation
methods can also perform representation-level anal-
ysis, i.e. probe an entire layer rather than individual
neurons.

Redundancy Analysis: Dalvi et al. (2020) have
shown that large neural networks learn knowl-
edge redundantly where multiple neurons are op-
timized to activate on the same input. This
is encouraged by the optimization choices such
as dropouts which explicitly force neurons to
learn in the absence of other neurons. In or-
der to facilitate the analysis of redundant neu-
rons, the toolkit provides a clustering based non-
redundant neuron extraction method. Running the
neurons through interpretation.clustering.-
extract_independent_neurons first before per-
forming any probing can reduce the overall search
space of neurons, and lead to better findings and
analyses.



4 Analysis and Evaluation

The analysis module provides implementations
of various evaluation and analysis methods. Some
of these methods provide quantitative results like
accuracy scores, while others allow users to per-
form qualitative analysis on neurons.

4.1 Classifier Accuracy
Classifier accuracy reciprocates the probing frame-
work (Belinkov et al., 2017; Hupkes et al., 2018).
Once a neuron ranking is obtained, a classifier is
trained towards the task of interest (the intrinsic
concept for which the probe was originally trained)
with the selected neurons. The delta between ora-
cle performance (accuracy using all the neurons)
and the accuracy of the classifier using the selected
neurons measures the efficacy of the ranking.

Selectivity It is important to ensure that the probe
is truly representing the concepts encoded within
the learned representations and not memorizing
them during classifier training. NeuroX enables
control task selectivity, a measure proposed by He-
witt and Liang (2019) to mitigate memorization
using the data.control_task module.

4.2 Ablation
An alternative approach used by (Dalvi et al.,
2019a) is to ablate all but the selected neurons in the
trained probe. The interpretation.ablation
allows manipulating the input data by keep-
ing/filtering specific neurons in the order of their
importance, allowing users to measure the drop in
performance with selected neurons.

4.3 Mutual Information
Information theoretic metrics such as mutual in-
formation have also been used to interpret repre-
sentations of deep NLP models (Pimentel et al.,
2020). Here, the goal is to measure the amount of
information a representation provides about a lin-
guistic concept. It is computed by calculating the
mutual information between a subset of neurons
and linguistic concepts.

4.4 Compatibility Metrics
Another set of evaluation metrics recently proposed
by Fan et al. (2023) carries out a pair-wise com-
parison of the discovered neurons across meth-
ods. While this strategy does not provide a di-
rect evaluation of a neuron interpretation method,
it provides an insight into how compatible a

method is with the other available methods. Neu-
roX implements two compatibility metrics in the
analysis.compatibility module: i) Average
Overlap (which shows how aligned a method is
with others) and ii) NeuronVote (which shows how
well-endorsed the ranking of a method is by other
methods).

4.5 Qualitative Evaluation
Visualizations have been used effectively to gain
qualitative insights on analyzing neural networks
(Karpathy et al., 2015; Kádár et al., 2017).
NeuroX provides a text visualization module
(analysis.visualization) that displays the acti-
vations of neurons w.r.t. to a concept (e.g. Figure 3).
The toolkit also allows corpus-based analysis in the
analysis.corpus module by extracting the top n
words in a corpus that activate a neuron. Examples
are shown in Table 3.

(a) Superlative Adjective Neuron

(b) Gerund Verb Neuron

Figure 3: Visualizations (POS) – Superlative Adjective
and Gerund Verb Neurons

5 Miscellaneous Functions

5.1 Scalability
Extracting, saving and working with neuron ac-
tivations over large datasets and models can be
very expensive, since each neuron’s activation is
saved for each token in the input corpus. To en-
able both disk- and runtime-savings, NeuroX pro-
vides a low precision mode where all the activa-
tions are saved using 16-bit precision instead of the
default 32/64-bit precision. This results in consid-
erable storage/memory savings and also improves
training/inference performance depending on the
method and underlying hardware. The precision
can be controlled by supplying the dtype=float16
option to the extraction/interpretation methods.



Neuron concept Model Top-5 words

Layer 9: 624 VBD RoBERTa supplied, deposited, supervised, paled, summoned
Layer 2: 750 VBG RoBERTa exciting, turning, seeing, owning, bonuses
Layer 0: 249 VBG BERT requiring, eliminating, creates, citing, happening
Layer 1: 585 VBZ XLNet achieves, drops, installments, steps, lapses, refunds
Layer 2: 254 CD RoBERTa 23, 28, 7.567, 56, 43
Layer 5: 618 CD BERT 360, 370, 712, 14.24, 550
Layer 1: 557 LOC XLNet Minneapolis, Polonnaruwa, Mwangura, Anuradhapura, Kobe
Layer 5: 343 ORG RoBERTa DIA, Horobets, Al-Anbar, IBRD, GSPC
Layer 10: 61 PER RoBERTa Grassley, Cornwall, Dalai, Bernanke, Mr.Yushchenko
Layer 6: 132 PER BERT Nick, Manie, Troy, Sam, Leith
Layer 2: 343 YOC BERT 1897, 1918, 1901, 1920, Alam

Table 3: Ranked list of words for some individual neurons, VBD: Past-tense verb, VBG: Gerund Verb, VBZ: Third
person singular, CD: Numbers, LOC: Location, ORG: Organization, PER: Person, YOC: Year of the century

5.2 Disk Formats for Representations

The toolkit offers flexibility to the user over the
format used to save the neuron activations. Specifi-
cally, it offers readers and writers for a text-based
format (json) and a binary format (hdf5). The
binary format provides faster saving/loading per-
formance, speeding up experiments with a large
number of neurons or a large amount of text. On
the other hand, the text-based format is consider-
ably easier to debug.

6 Related Work

A number of toolkits have been made available to
carry out the analysis and interpretation of neural
network models. The What-If tool (Wexler et al.,
2019) inspects machine learning models and pro-
vides users an insight into the trained model based
on the predictions. Seq2Seq-Vis (Strobelt et al.,
2018) enables the user to trace back the prediction
decisions to the input in neural machine transla-
tion models. Captum (Kokhlikyan et al., 2020)
provides generic implementations of a number of
gradient and perturbation-based attribution algo-
rithms. LIT (Tenney et al., 2020) implements var-
ious methods of counterfactual explanations, at-
tribution methods and visualization of attention.
diagNNose (Jumelet, 2020) integrates representa-
tion analysis methods and attribution methods and
finally, iModelsX (Singh and Gao, 2023) aims to
provide natural explanations for datasets, which
can provide insights into the models that are trained
with these datasets. While these tools cover a num-
ber of interpretation methods, none of them facil-
itate neuron-level interpretation of NLP models.
The LM-Debugger toolkit (Geva et al., 2022) is an
interactive debugger for transformer LMs, which
provides a fine-grained interpretation and a power-

ful framework for intervening in LM behavior.
Ecco (Alammar, 2021) is a visualization based

library that implements saliency methods and ad-
ditionally enables visualization of neurons of the
network. Similar to Ecco, the NeuroX toolkit en-
ables visualization of neurons of the network. In
addition, we implement a wide range of neuron
interpretation methods that can be accessed using a
uniform API and provide various analysis and eval-
uation methods. Our toolkit empowers researchers
to focus on specific parts of the neuron interpre-
tation research such as interpretation, comparison
or evaluation without worrying about setting up
the rest of the pipeline like data processing, embed-
ding extraction, integration with various pre-trained
models, and evaluation of the method. NeuroX
powers other interpretation analysis frameworks
such as ConceptX (Alam et al., 2022; Sajjad et al.,
2022b) and NxPlain (Dalvi et al., 2023; Durrani
et al., 2022b).

The previous version of NeuroX (Dalvi et al.,
2019b) only supported a specific machine trans-
lation library and one neuron interpretation
method (Durrani et al., 2022a) as a GUI app. The
current Python toolkit is a redesigned version with
a unified architecture. It includes multiple features
like a data processing module, numerous neuron in-
terpretation and evaluation methods, and seamless
integration with popular toolkits such as Hugging-
Face’s transformers.

7 Conclusion and Future Work

We presented NeuroX, an open-source toolkit to
carry out neuron-level interpretation of representa-
tions learned in deep NLP models. It maintains im-
plementations of several neuron analysis methods
under a consistent API, and provides implemen-



tations for preparing the data, analyzing neurons
and evaluating the methods. In the future, Neu-
roX plans to expand its extraction module to other
frameworks like FairSeq and OpenNMT-py. In ad-
dition, we plan to integrate attribution based neuron
saliency methods to add another class of interpreta-
tion methods to the toolkit.
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9 Ethical Considerations

The NeuroX toolkit provides a post hoc interpre-
tation of pre-trained models. The toolkit makes a
contribution towards improving the transparency
of deep models and may discover biases present
in these models. We do not foresee any direct eth-
ical issues with respect to the developed toolkit.
In terms of the neuron interpretation methods, the
majority of them are based on the correlation be-
tween neurons and the input. One potential issue
with such an interpretation is its faithfulness with
respect to the knowledge used by the model in mak-
ing predictions. However, this is not a limitation of
the toolkit but a limitation of the research methods
in general.
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