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Abstract

The opacity of deep neural networks remains a challenge in
deploying solutions where explanation is as important as pre-
cision. We present ConceptX, a human-in-the-loop frame-
work for interpreting and annotating latent representational
space in pre-trained Language Models (pLMs). We use an
unsupervised method to discover concepts learned in these
models and enable a graphical interface for humans to gener-
ate explanations for the concepts. To facilitate the process, we
provide auto-annotations of the concepts (based on traditional
linguistic ontologies). Such annotations enable development
of a linguistic resource that directly represents latent concepts
learned within deep NLP models. These include not just tra-
ditional linguistic concepts, but also task-specific or sensitive
concepts (words grouped based on gender or religious con-
notation) that helps the annotators to mark bias in the model.
The framework consists of two parts (i) concept discovery1

and (ii) annotation platform.2,3

Introduction
Work done on representation analysis undercover linguistic
phenomena that are captured as DNNs are trained towards
any NLP task (Belinkov et al. 2017; Liu et al. 2019; Ten-
ney, Das, and Pavlick 2019; Dalvi et al. 2019a). A down-
side of previous methodologies is that their scope is limited
to pre-defined concepts that only reinforce traditional lin-
guistic knowledge and do not reflect on the novel concepts
learned by the model, therefore resulting in a narrow view of
the knowledge captured by pre-trained Language Models.

We do away with this problem by presenting a Frame-
work for Latent Concept Analysis (LCA) in deep NLP
Models. Our framework is composed of two modules: i)

*This work was carried out while the author was at QCRI.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Code available at: https://github.com/hsajjad/ConceptX
2Main platform: https://micromappers.qcri.org/, where project

can be created for a new task. Here is an example of the BERT
concept annotation task: https://micromappers.qcri.org/project/nx-
concept-annotation

3https://youtu.be/t8UCP6WPoYg

Concept Discovery and ii) Annotation Platform. We dis-
cover latent concepts in deep NLP models using an unsu-
pervised approach (Dalvi et al. 2022) and enable a human-
in-the-loop platform to annotate these concepts. The frame-
work is facilitated by auto-labeling the concepts by aligning
them to the linguistic ontologies (Sajjad et al. 2022).

Platform Overview
In Figure 1 we present the pipeline of our framework and
below we describe these modules:

Concept Discovery
Our method is based on an unsupervised approach to dis-
cover latent concepts in the representational space of the pre-
trained models (Dalvi et al. 2022). We generate feature vec-
tors (contextualized representation) by doing a forward-pass
on the model, and cluster representations using agglomer-
ative hierarchical clustering (Gowda and Krishna 1978) to
discover the encoded concepts. Our hypothesis is that con-
textualized word representations learned within pLMs cap-
ture meaningful groupings based on a coherent concept such
as lexical, syntactic and semantic similarity, or any task or
data specific pattern that groups the words together (Sajjad,
Durrani, and Dalvi 2021).

Annotation Platform
Once we have discovered the latent concepts captured in the
model, we provide a human-in-the-loop framework to an-
alyze and annotate these concepts. To facilitate the effort,
we auto-label the concepts with their linguistic connotations
wherever applicable.

Annotation Guidelines Our annotation consists of two
questions, Q1: Does the cluster represent a meaningful con-
cept? Q2: Can the neighboring clusters be combined to form
a meaningful concept? We provide annotators with specific
instructions with examples of what constitutes a meaningful
concept based on our definition (Sajjad, Durrani, and Dalvi
2021). The word cluster is represented in a form of a word
cloud of examples – See Figure 2), where the relative size
of a word in the word cloud depends on the frequency of the
word in the data. To understand the context of each word in



Figure 1: Complete pipeline of the proposed framework for concept analysis in the trained models.

the cluster we also facilitate the annotators with associated
sentences in the dataset. More context is enabled through
Google search within our framework, where the the annota-
tor can look-up for meaning and more contextual informa-
tion on the words in the concept. Due to hierarchical clus-
tering, we often expect neighboring clusters to capture very
similar concepts that can be conjoined. For example neigh-
boring clusters capturing Hindu and Muslim names can be
combined together to form a Hindu-Muslim names concept.
Our goal in Q2 is to capture such concepts. Having such an
annotation facilitates analysis at a hierarchical level.

Auto-labeling Pre-trained language models have shown to
learn rich linguistic concepts (Belinkov et al. 2017; Liu et al.
2019; Tenney, Das, and Pavlick 2019; Durrani et al. 2019).
To prevent the human effort of re-annotating such concepts,
we integrate an alignment framework (Sajjad et al. 2022) in
our platform. We annotated the training data used to obtain
latent concepts, with core linguistic concepts (e.g., parts-of-
speech, word-net tags etc.) and map the latent concepts to
linguistic concepts through an alignment function.

Use Cases
BCN Development
The BERT conceptNet (BCN) dataset4 development is an
example of the utilization of the framework. We had a group
of 6 linguists annotate encoded concepts in the BERT-base-
cased model. The resulting dataset: BCN is a unique multi-
faceted resource consisting of 174 concept labels with a to-
tal of 997,195 annotated instances. It can be used by the
community to benchmark efforts on interpretability using
model’s concept instead of relying on extrinsic concepts.
The hierarchy present in the concept labels provides flexi-
bility to use data at different granularities.

Task Specific Model Analysis
In addition to the BCN development, we analyzed two trans-
formers – BERT-base-cased (Devlin et al. 2019) and XLM-

4https://neurox.qcri.org/projects/bert-concept-net.html

Figure 2: Polarity Concepts: Negative Sentiment (SST-2),
Toxic (right) (HSD)

RoBERT (Conneau et al. 2020) models, fine-tuned towards
two tasks: sentiment analysis (SST-2, Socher et al. 2013) and
the hate speech detection (HSD, Mathew et al. 2021). Our
framework helps visualize how the models segregates nega-
tive and positive polarity concepts, in the final layers of the
models. See Figure 2 for examples of polarity concepts in
the two tasks and (Durrani et al. 2022) for details.

Related Work
A number of toolkits have been made available to carry
analysis of neural network models. Google’s What-If tool
(Wexler et al. 2019) inspects machine learning models and
provides users an insight of the trained model based on
the predictions. Seq2Seq-Vis (Strobelt et al. 2018) enables
the user to trace back the prediction decisions to the in-
put in NMT models. Captum (Kokhlikyan et al. 2020) pro-
vides generic implementations of a number of gradient and
perturbation-based attribution algorithms. NeuroX (Dalvi
et al. 2019b) and Ecco (Alammar 2021) use probing clas-
sifiers to examine the representations in pLMs. Tenney et al.
(2020) facilitates debugging of pLMs through intractive vi-
sualizations. Our goal is slightly different from these toolk-
its. Along with the analysis of the latent spaces within pLMs,
we intend to annotate latent ontologies learned by these
models using human-in-the-loop facilitated by traditional
linguistic knowledge. We believe such annotations could be
useful to benchmark efforts in interpretation and provide a
more realistic view of what these models are capturing.
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