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This informal document details the evalua-
tion measures that will be used in SemEval-
2016 Task 4 “Sentiment Analysis in Twitter”,
a revamped edition of SemEval-2015 Task 10
(Rosenthal et al., 2015). Note: changes that
have been made to the present document since
Version 1.0 onwards are typeset in blue.

Task 4 consists of five subtasks; the evalu-
ation measures that we will use for them will
be discussed in Sections 1 to 5. Subtasks B to
E conceptually form a “2×2 matrix” (see Ta-
ble 1), where the rows indicate the goal of the
task (classification vs. quantification) and the
columns indicate the granularity of the task
(two-point scale vs. five-point scale).

Note that, for Subtasks B to E, the dataset
is subdivided into a number of “topics”, and
the subtask needs to be carried out indepen-
dently for each topic. As a result, each of
the evaluation measures described below is
“macroaveraged” across the topics, i.e., we
compute the measure individually for each
topic, and we then average the results across
the topics.
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Table 1: The “2×2 matrix” of Subtasks B-E.

1 Subtask A: Message Polarity
Classification

Subtask A consists of the following problem:
Given a tweet, predict whether the tweet is of
positive, negative, or neutral sentiment. It is
thus a “single-label multi-class” classification
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(SLMCC) task, in which each tweet must be
classified as belonging to exactly one of the
three classes C={Positive, Neutral, Negative}.
This subtask is a rerun; it was also present in
SemEval-2013 (Nakov et al., 2013), SemEval-
2014 (Rosenthal et al., 2014), SemEval-2015
(Rosenthal et al., 2015) as Subtask B.

For reasons of continuity with the 2013-2015
editions of this subtask, we will adopt the same
evaluation measure that was used then, i.e.,

FPN1 =
FPos1 + FNeg1

2
(1)

FPos1 is defined

• by taking ρPos to be the fraction of Posi-
tive tweets that are predicted to be such;
in terms of the confusion matrix of Table
2, this means that ρPos = PP

PP+UP+NP ;

• by taking πPos to be the fraction of tweets
predicted to be Positive that are indeed
Positive, i.e., πPos = PP

PP+PU+PN ;

• by taking FPos1 =
2πPosρPos

πPos + ρPos
.

FNeg1 is defined similarly, and the evaluation
measure we finally adopt is FPN1 as from Equa-
tion 1.

2 Subtask B: Tweet classification
according to a two-point scale

Subtask B consists of the following problem:
Given a tweet known to be about a given topic,
classify whether the tweet conveys a positive
or a negative sentiment towards the topic. As
such, it is thus a binary classification task,
in which each tweet must be classified as
belonging to exactly one of the two classes
C={Positive, Negative}. This subtask is a sim-
plification of Subtask C as from SemEval-2015,



Actual

Pos Neu Neg

P
re

d
ic

te
d Pos PP PU PN

Neu UP UU UN

Neg NP NU NN

Table 2: The confusion matrix for Subtask A.
Cell XY stands for “the number of tweets that
were labelled as X and should have been la-
belled as Y”, where P U N stand for Positive
Neutral Negative, respectively.

which also required to filter out tweets that
were not about the topic, and which (like Sub-
task A does now – see Section 1) also involved
the Neutral class.

As an evaluation measure, for this task we
will adopt macroaveraged recall, i.e.,

ρPN =
ρPos + ρNeg

2
(2)

where ρPos and ρNeg are as defined in Section
1; note in fact that, since we do not have the
Neutral class here, PU UP UU UN NU from
the confusion matrix of Table 2 are 0. ρPN

ranges in [0, 1], where 1 is achieved only by
the perfect classifier (the classifier that cor-
rectly classifies all items), 0 is achieved only
by the perverse classifier (the classifier that
misclassifies all items), while 0.5 is

• the value obtained by a trivial classifier
(i.e., the classifier that assigns all tweets
to the same class – be it Positive or Neg-
ative), and

• the expected value of a random classifier.

The advantage of ρPN over “standard” accu-
racy is that it is more robust to class imbal-
ance, since for standard accuracy the score
of the majority-class classifier is the relative
frequency (aka “prevalence”) of the majority
class, that may be much higher than 0.5 if the
test set is imbalanced.

The advantage of ρPN over F1 is that it is
more robust to class imbalance, since for F1

the score of the trivial acceptor may be much
higher than 0.5 if the test set is imbalanced

and the Positive class is the majority class. An-
other advantage of ρPN over F1 is that ρPN

is invariant with respect to switching Positive
with Negative, while F1 is not.

3 Subtask C: Tweet classification
according to a five-point scale

Subtask C consists of the following problem:
Given a tweet known to be about a given topic,
estimate the sentiment conveyed by the tweet
towards the topic on a five-point scale. As
such, it is thus an ordinal classification (OC
– also known as ordinal regression) task, in
which each tweet must be classified in exactly
one of the classes in C={VeryPositive, Positive,
OK, Negative, VeryNegative} (represented in
our dataset by numbers in {+2,+1,0,-1,-2}),
where there is a total order defined on C. This
subtask was not present in SemEval-2015.

The essential difference between SLMCC
(see Section 1) and OC is that in the latter
not all mistakes weigh equally; e.g., classifying
as VeryNegative an item that should be classi-
fied as VeryPositive is a more serious mistake
than classifying as VeryNegative an item that
should be classified as Negative.

As our evaluation measure, we use macroav-
eraged mean absolute error (MAEM ):

MAEM (h, Te) =
1

|C|

|C|∑
j=1

1

|Tej |
∑

xi∈Tej

|h(xi)−yi|

(3)
where yi denotes the true label of item xi,
h(xi) denotes its predicted label, Tej denotes
the set of test documents whose true class is
cj , |h(xi)−yi| denotes the “distance” between
classes h(xi) and yi (e.g., the distance between
veryPositive and Negative is 3), and the “M”
superscript indicates “macroaveraging”.

The advantage of MAEM over “standard”
mean absolute error, which is defined as

MAEµ(h, Te) =
1

|Te|
∑

xi∈Te
|h(xi)− yi| (4)

where the “µ” superscript stands for “microav-
eraging”, is that it is robust to class imbalance
(which is useful, given the imbalanced nature
of our dataset) while coinciding with MAEµ

on perfectly balanced datasets (i.e., datasets
with exactly the same number of test docu-
ments for each class).



Note that, unlike the measures discussed in
Sections 1 and 2, MAEM is a measure of error,
and not a measure of accuracy, so lower values
are better. See (Baccianella et al., 2009) for
more detail on MAEM .

4 Subtask D: Tweet quantification
according to a two-point scale

Subtask D consists of the following problem:
Given a set of tweets known to be about a given
topic, estimate the distribution of the tweets
across the Positive and Negative classes. It
is thus a binary quantification task, in which
each tweet belongs exactly to one of the classes
in C={Positive, Negative} and the task is to
compute an estimate p̂(cj) of the relative fre-
quency in the test set p(cj) of each of the
classes in C. This is subtask is related to (yet,
different from) SemEval-2015 subtask E.

The essential difference between binary clas-
sification (as from Section 2) and binary quan-
tification is that, in the latter, errors of differ-
ent polarity (e.g., a false positive and a false
negative for the same class) compensate each
other.

The measure we are going to adopt is
normalized cross-entropy, better known as
Kullback-Leibler Divergence (KLD). KLD was
proposed as a quantification measure in (For-
man, 2005), and is defined as follows:

KLD(p̂, p, C) =
∑
cj∈C

p(cj) log
p(cj)

p̂(cj)
(5)

KLD is a measure of the error made in esti-
mating a true distribution p over a set C of
classes by means of a predicted distribution
p̂. Like MAEM in Section 3, KLD is a mea-
sure of error, so lower values are better. KLD
ranges between 0 (best) and +∞ (worst).

Note that the upper bound of KLD is not
finite since Equation 5 has predicted probabil-
ities, and not true probabilities, at the denom-
inator: that is, by making a predicted proba-
bility p̂(cj) infinitely small we can make KLD
infinitely large. To solve this problem, in com-
puting KLD we smooth both p(cj) and p̂(cj)

via additive smoothing, i.e.,

ps(cj) =
p(cj) + ε

(
∑
cj∈C

p(cj)) + ε · |C|

=
p(cj) + ε

1 + ε · |C|

(6)

where ps(cj) denotes the smoothed version of
p(cj) and the denominator is just a normaliz-
ing factor (same for the p̂s(cj)’s); the quantity
ε = 1

2·|Te| is used as a smoothing factor, where
Te denotes the test set. The smoothed ver-
sions of p(cj) and p̂(cj) are then used in place
of their original versions in Equation 5; as a re-
sult, KLD is always defined and still returns
a value of 0 when p and p̂ coincide.

5 Subtask E: Tweet quantification
according to a five-point scale

Subtask E consists of the following problem:
Given a set of tweets known to be about a
given topic, estimate the distribution of the
tweets across the five classes of a five-point
scale.

It is an ordinal quantification (OQ) task, in
which (as in OC) each tweet belongs exactly
to one of the classes in C={VeryPositive, Posi-
tive, OK, Negative, VeryNegative}, where there
is a total order on C, and (as in binary quan-
tification) the task is to compute an estimate
p̂(cj) of the relative frequency p(cj) in the test
tweets of all the classes cj ∈ C. This subtask
was not present in SemEval-2015.

The measure we adopt for OQ is the Earth
Mover’s Distance (Rubner et al., 2000), a mea-
sure well known in the field of computer vision.
When there is a total order on the classes in
C, the Earth Mover’s Distance is defined as

EMD(p̂, p) =

|C|−1∑
j=1

|
j∑
i=1

p̂(ci)−
j∑
i=1

p(ci)| (7)

and can be computed in |C| steps from the es-
timated and true class prevalences. Like KLD
in Section 4, EMD is a measure of error, so
lower values are better; EMD ranges between
0 (best) and |C| − 1 (worst). See (Esuli and
Sebastiani, 2010) for more detail on EMD.



A Appendix: Useful pointers

Quantification. Several publications in the
literature discuss methods for binary quantifi-
cation: see e.g., (Aláız-Rodŕıguez et al., 2011;
Barranquero et al., 2015; Esuli and Sebastiani,
2015; Forman, 2008; Hopkins and King, 2010;
Milli et al., 2013; Saerens et al., 2002). Some
of these papers, e.g., (Esuli and Sebastiani,
2015; Hopkins and King, 2010), contain links
for downloading the software for performing
quantification. Sentiment quantification is dis-
cussed in (Esuli and Sebastiani, 2010); tweet
sentiment quantification is discussed in (Gao
and Sebastiani, 2015).

Ordinal classification. Ordinal classifica-
tion has a very rich literature; papers propos-
ing OC methods include, e.g., (Chu and
Keerthi, 2007; Dembczyński et al., 2007;
Fouad and Tino, 2012; Herbrich et al., 2000;
Li and Lin, 2007; Lin and Li, 2006; Lin and
Li, 2012; Sun et al., 2010; Xia et al., 2006). A
survey on ordinal classification methods can be
found in (Gutiérrez et al., 2015). Some of these
papers, e.g., (Chu and Keerthi, 2007), contain
links for downloading software performing OC.
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Roćıo Aláız-Rodŕıguez, Alicia Guerrero-Curieses,
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