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Abstract

In this paper, we describe the TATO sys-
tem which participated in the SemEval-2015
Task 2a: “Semantic Textual Similarity (STS)
for English”. Our system is trained on pub-
lished datasets from the previous competi-
tions. Based on some machine learning tech-
niques, it combines multiple similarity mea-
sures of varying complexity ranging from sim-
ple lexical and syntactic similarity measures
to complex semantic similarity ones to com-
pute semantic textual similarity. Our final
model consists of a simple linear combination
of about 30 main features out of a numerous
number of features experimented. The results
are promising, with Pearson’s coefficients on
each individual dataset ranging from 0.6796 to
0.8167 and an overall weighted mean score of
0.7422, well above the task baseline system.

1 Introduction
Measuring semantic textual similarity (STS) can be
defined as the task of computing the degree of se-
mantic equivalence between pairs of texts. It has
drawn an increasing amount of attention from the
NLP community, especially at level of short text
fragments, as partly reflected in the SemEval tasks
in recent years. In the SemEval-2015 Task 2, the de-
gree of semantic equivalence for each sentence pair
is represented by a similarity score between 0 (no
relation) and 5 (semantic equivalence). STS has a
wide range of applications which includes applica-
tions for machine translation evaluation, information
extraction, question answering, and summarization.

STS is related to, but different from textual en-
tailment (TE) (Dagan et al., 2006) and paraphrase

recognition (PARA) (Dolan et al., 2004) as it aims
to render a graded notion of semantic equivalence
between two textual snippets, rather than a binary
yes/no decision. STS requires a bidirectional sim-
ilarity relation between sentences, while TE anno-
tates them with an unidirectional entailment relation.

The literature of STS is rife with attempts to
compute similarity between texts using a multitude
of measures at different levels of depth: lexical
(Malakasiotis and Androutsopoulos, 2007), syntac-
tic (Malakasiotis, 2009; Zanzotto et al., 2009), and
semantic (Rinaldi et al., 2003; Bos and Markert,
2005). (Gomaa and Fahmy, 2013) discusses exist-
ing works on STS and partitions them into three cat-
egories based on the similarity measures used: (i)
string-based approaches (Bär et al., 2012; Malakasi-
otis and Androutsopoulos, 2007) which operate on
string sequences and character composition to com-
pute similarities and can be categorized into two
groups: character-based and term-based approaches;
(ii) corpus-based approaches (Li et al., 2006) which
gain statistics information about words from large
corpora and reflect their semantics in distributional
high semantic space to determine the similarity, such
as Latent Semantic Analysis (LSA) (Landauer et
al., 1998; Foltz et al., 1998) and Explicit Seman-
tic Analysis (ESA) (Gabrilovich and Markovitch,
2007); (iii) knowledge-based approaches (Mihalcea
et al., 2006) which determine the degree of similar-
ity between texts using information derived from se-
mantic networks, such as WordNet (Miller, 1995).

Though each of these existing measures has its
own advantages, they are typically used in separa-
tion. In our work, we integrate multiple similarity
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measures of varying complexity ranging from sim-
ple lexical and syntactic similarity measures to com-
plex semantic similarity ones and rely on supervised
machine learning to take advantage of the different
contributions of different features.

We organize the remainder of the paper as fol-
lows: Section 2 describes the features in detail. Sec-
tion 3 presents the machine learning setup and our
submitted system. Sections 4 discusses the results.
The conclusions follow in the final section.

2 Text Similarity Measures
In this section, we describe the various features we
experimented and selected for our final model.

2.1 Lexical Similarity Measures

2.1.1 Word/Phrase Alignment Measures
When two sentences are related semantically,

they tend to be similar in appearance. Hence,
we develop an automatic word/phrase alignment
module based on the METEOR metric (Denkowski
and Lavie, 2010) to align corresponding words and
phrases between each pair of sentences. Alignments
here are based on exact, stem, synonym (via Word-
Net), and paraphrase (via a lookup table) matches
between words and phrases. Given two sentences of
text, s1 and s2 (stop-words are removed from each
sentence), we define the following metrics:

S (s1,s2) =
∣∣numOfMatches(s1,s2)− min{len(s1),len(s2)}

2

∣∣
and

D(s1, s2) = 2×numOfMatches(s1,s2)
min{len(s1),len(s2)} ,

where numOfMatches(s1, s2) and len(s) are the
number of aligned word/phrase pairs between s1 and
s2, and the number of words in s, respectively.

2.1.2 Machine Translation Measures
We treat the task as a monolingual machine trans-

lation (MT) task (the source and target languages are
the same, and the input and output should be simi-
lar in meaning), and take advantage of a variety of
MT measures. At the lexical level, we experiment
different n-gram and edit-distance-based metrics.

BLEU (Papineni et al., 2002), NIST (Doddington,
2002), and METEOR (Denkowski and Lavie, 2010)
are n-gram-based metrics commonly used for MT
evaluation. BLEU scores the target output by count-

ing n-gram matches with the reference, relying on
exact matching and has no concept of synonymy or
paraphrasing. NIST is similar to BLEU, however, it
uses the arithmetic mean of n-gram overlaps, rather
than the geometric mean. Unlike BLEU which fo-
cuses on precision, METEOR uses a combination of
both precision and recall. Moreover, it incorporates
stemming, synonymy and paraphrase. MAXSIM
(Chan and Ng, 2008) models the MT problem as
a maximum bipartite matching one and maps each
word in one sentence to at most one word in the other
sentence. We also experiment with TESLA (Liu et
al., 2010) - a variant of MAXSIM.

Besides those, we also use edit-distance-based
metrics. TER (Snover et al., 2006) and TERp
(Snover et al., 2009) measure the number of edit
operations (e.g. insertions, deletions, and substitu-
tions) necessary to transform one text into the other.

2.2 Syntactic Similarity Measures
2.2.1 Content Word Match and Mismatch

Given a sentence pair, we extract corresponding
content words (nouns, verbs, adjectives, and ad-
verbs) between the sentences. This syntactic infor-
mation is obtained from the Stanford parser (Klein
and Manning, 2003). We have both the proportions
of aligned words and the proportions of unaligned
words in the two sentences (by normalizing with the
harmonic mean of their number of content words)
for each lexical category of content word.

2.2.2 Subject-Verb-Object Comparison
We also employ dependency parsing in measur-

ing semantic similarity. Specifically, some attributes
like subjects, verbs, objects are identified for each
pair of sentences. These attributes are used for our
matching procedure which is based on the following
comparisons between each pair of sentences:

• Subject-Subject Comparison

• Verb-Verb Comparison

• Object-Object Comparison

• Subject-Verb Comparison

• Verb-Object Comparison

• Cross Subject-Object Comparison

For each of these comparisons, we assign a matching
score of 1.0 (match) or 0.0 (mismatch).
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2.3 Semantic Similarity Measures

2.3.1 Named Entity, Number, Time Expression
Match and Mismatch

Careful observation of the development dataset
revealed that mismatch of named entities, numbers
or time expressions might cause semantic dissimi-
larity, for example, when s1 consists of a named en-
tity that does not appear in s2. Based on this, we
detect both match and mismatch of named entities,
numbers and time expressions between each pair of
sentences (similar to that of content words). We use
the Stanford Named Entity Recognizer (Finkel et al.,
2005) to detect named entities in sentences.

2.3.2 LDA-based measures
We build two Latent Dirichilet Allocation (LDA)

models (Blei et al., 2003) from Wikipedia and
the training dataset separately, using the Gensim
(Řehůřek and Sojka, 2010) and Mallet (McCallum,
2002) software with 100 requested latent topics.
Each sentence is represented by a vector using topics
estimated by LDA. The similarity between two sen-
tences is calculated as the cosine similarity between
their corresponding vectors.

2.3.3 Word-representation-based measures
Word representation computes vector representa-

tions of each word based on its context from very
large datasets, usually capturing both syntactic and
semantic information of words. Given two sentences
s1 and s2 (stop-words are removed), each word of
the sentences is represented as a single vector. We
develop two different strategies as follows:

Strategy 1 For each word wi in s1, we iden-
tify a word wj most similar to wi in s2 by using
cosine similarity measure. We define a measure
W 2V (s1, s2) as follows:

W 2V (s1, s2) =

∑
wi∈s1

max
wj∈s2

cos(wi, wj)

len(s1)
,

where cos(wi, wj) is the cosine similarity between
the word vectors of wi and wj . We also apply this
strategy for each category of content words (noun,
verb, adjective, and adverb) separately.

Strategy 2 We sum up all of the vectors of words
that occur in each sentence and define a sentence
similarity measure S 2V (s1, s2) as follows:

S 2V (s1, s2) = cos(
∑

wi∈s1

wi,
∑

wj∈s2

wj),

For word representation, we use both the Word2vec
model (Mikolov et al., 2013) trained on Google
News and the GloVe model (Pennington et al., 2014)
trained on Common Crawl data.

2.3.4 WordNet-based measures

WordNet (Miller, 1995) is a commonly used lex-
ical database of English where words of the same
meaning are grouped into synonym sets (synsets).
By using information derived from WordNet, we
construct some similarity measures as follows:

Strategy 1 This is similar to Strategy 1 for word-
representation-based measures, however, instead of
using cosine similarity, we use the Wordnet path
similarity (the shortest path that connects the senses
in the is-a (hypernym/hypnoym) taxonomy).

Strategy 2 We determine some semantic relation-
ships, e.g, synonym, antonym, and hypernym be-
tween sentences. The proportions of synonym word
pairs, antonym word pairs, hypernym word pairs in
two sentences (by normalizing with the harmonic
mean of their number of content words) are taken
as proxies of their semantic similarity.

3 System Description

3.1 Machine Learning Setup

The machine learning setup is described as follows:
Pre-processing The pre-processing phase in-

cludes tokenization, POS tagging, lemmatization,
NER, syntactic parsing with the Stanford CoreNLP
Toolkit (Manning et al., 2014). For some measures,
we filter out punctuations and stop-words by using a
pre-compiled stop-words list.

Feature Generation We run each of the similar-
ity measures separately and use the resulting scores
as features for a machine learning classifier. A fea-
ture is selected for our final model if it proves useful
in improving the performance of the system.

Feature Combination The pre-computed simi-
larity score vectors serve as features for this step.
Our system utilizes a classifier combination ap-
proach, using a simple linear regression model to
combine all the similarity measures. We use the
trial dataset that comprises the 2012, 2013 and 2014
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datasets to develop and train our model. In the devel-
opment cycle, we used a training dataset consisting
of 6842 sentence pairs and a test dataset consisting
of 3750 sentence pairs, with gold standard scores.
We use the WEKA machine learning toolkit (Hall et
al., 2009) to perform our experiments.

Post-processing If the pre-processed sentences
match, we set their similarity score to 5 regardless
of the output of our classifier. If the classifier out-
puts an invalid similarity score s which is not in the
score range [0-5], we set the similarity score to f(s)

defined as follows: f(s) =
{

0 + α if s < 0
5− α if s > 5

In our experiments, the best value for α is 0.5.

3.2 Submitted System
TATO-1stWTW Because of our limited time, we
submitted only one run to the SemEval-2015 Task
2a. After the development cycle, we identified about
30 main features out of a numerous number of fea-
tures experimented. These features achieved the best
performance on the training dataset. For our final
system, we trained the classifier on a joint dataset
of all known training datasets, instead of training a
separate classifier for each individual dataset.

4 Results

4.1 Results on the 2014 Test Data
We evaluated our model on the 2014 test data
comprising pairs of news headlines (headlines),
pairs of glosses (OnWN), image descriptions (im-
ages), DEFT-related discussion forums (deft-forum)
and news (deft-news), and tweet comments and
newswire headline mappings (tweet-news). We used
the 2012, 2013 datasets consisting of 6842 sentence
pairs to train our model. The test dataset contains
3750 sentence pairs excluded from training. Our
model was compared against the best performing
system on the SemEval-2014 English STS sub-task
(DLS@CU-run2) using the official scorer. The re-
sults are summarized in Table 1. With regard to
Deft-forum and Tweets, our system outperformed
the DLS@CU’s system, we also achieved a higher
score in the weighted mean across all datasets.

4.2 Results on the 2015 Test Data
The official score is based on the average of Pearson
correlation. Besides Pearson correlations computed

Run DF DN H I OWN TN Mean
TATO1 .550 .748 .755 .807 .817 .777 .764
DLS@CU2 .483 .766 .765 .821 .859 .764 .761

Table 1: Results on the 2014 test datasets: deft-forum
(DF), deft-news (DN), headlines (H), images (I), OnWN
(OWN), tweet-news (TN).

for individual datasets, including answers-forums,
answers-students, belief, headlines, and images,
Mean scores are provided to show the weighted
means across all datasets (the weight is based on the
number of sentence pairs in each dataset).

Table 2 reports our official results achieved on
the test data (TATO-1stWTW), besides the highest-
performance and lowest-performance systems (ac-
cording to Mean), and also the task baseline system.
Our system was ranked among the most robust sys-
tems out of more than 70 participating systems and
achieved good performance on answers-forums and
belief datasets.

# Run AF AS B H I Mean
1 DLS@CU1 .739 .773 .749 .825 .864 .802
...

...
...

...
...

...
...

...
25 TATO1 .680 .685 .721 .767 .817 .742
...

...
...

...
...

...
...

...
59 baseline1 .445 .665 .652 .531 .604 .587
...

...
...

...
...

...
...

...
73 DalGTM1 .290 -.053 .063 .060 .066 .062

Table 2: Official results on the test datasets: answers-
forums (AF), answers-students (AS), belief (B), head-
lines (H), and images (I).

5 Conclusions and Future Work

This paper describes the TATO team’s submission to
the SemEval-2015 Task 2a: “Semantic Textual Sim-
ilarity for English”. Our system uses a simple linear
regression model to combine multiple text similarity
measures at different levels of depth: lexical, syn-
tactic, and semantic. While we did not achieve the
highest ranks on any of the particular datasets, our
system was ranked among the most robust systems
out of more than 70 participating systems.

For the future work, we will explore other eval-
uation measures for STS and try to train a sepa-
rate classifier for each type of the existing datasets.
We also suggest that we should work on some other
types of data, such as legal or medical data.
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