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Abstract Sentiment classification has become a ubiqui-

tous enabling technology in the Twittersphere, since clas-

sifying tweets according to the sentiment they convey

towards a given entity (be it a product, a person, a political

party, or a policy) has many applications in political sci-

ence, social science, market research, and many others. In

this paper, we contend that most previous studies dealing

with tweet sentiment classification (TSC) use a suboptimal

approach. The reason is that the final goal of most such

studies is not estimating the class label (e.g., Positive,

Negative, or Neutral) of individual tweets, but estimating

the relative frequency (a.k.a. ‘‘prevalence’’) of the different

classes in the dataset. The latter task is called quantifica-

tion, and recent research has convincingly shown that it

should be tackled as a task of its own, using learning

algorithms and evaluation measures different from those

used for classification. In this paper, we show (by carrying

out experiments using two learners, seven quantification-

specific algorithms, and 11 TSC datasets) that using

quantification-specific algorithms produces substantially

better class frequency estimates than a state-of-the-art

classification-oriented algorithm routinely used in TSC.

We thus argue that researchers interested in tweet senti-

ment prevalence should switch to quantification-specific

(instead of classification-specific) learning algorithms and

evaluation measures.

1 Introduction

Sentiment classification is the task of detecting, given an

opinion-laden textual item (e.g., a product review, a blog

post, an editorial, etc.), whether it expresses a positive or a

negative opinion about a given entity (e.g., a product, a

person, a political party, or a policy). The above scenario is

a simple instance of binary classification, with Positive

and Negative as the classes. Slightly more complex sce-

narios result when the Neutral class is added to the picture,

which makes the task an instance of single-label multi-

class (SLMC) classification, or when sentiment strength

needs to be assessed on an ordered scale consisting of

VeryPositive, Positive, Fair, Negative, VeryNegative,

which makes the task one of ordinal classification.

In any of the above incarnations, sentiment classification

has become a ubiquitous enabling technology in the Twit-

tersphere, since classifying tweets according to the sentiment

they convey towards a given entity has many applications in

political science, social science, market research, and many

others (Martı́nez-Cámara et al. 2014; Mejova et al. 2015).

The tweet sentiment classification (TSC) shared task which

has taken place in the context of the last three SemEval

evaluation campaigns (where it is called ‘‘Sentiment Anal-

ysis in Twitter’’—see Nakov et al. 2013; Rosenthal et al.

2014, 2015) has been, in all three editions, the SemEval task

with the highest number of participants.
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In this paper, we contend that most previous studies

dealing with TSC use a suboptimal approach. The rest of

this section is devoted to arguing why this is so.

Usually, the final goal of most such studies is not esti-

mating the label of an individual tweet, but studying the

distribution of a set of tweets across the classes of interest;

in other words, the interest in such studies is not at the

individual level, but at the aggregate level. For instance,

when Borge-Holthoefer et al. (2015) use Twitter to study

the polarization of sentiments during the 2013 Egyptian

coup, they are not interested in the sentiments of the

specific individual behind a specific Twitter account, but

are interested in the aggregate data (possibly broken down

according to various criteria) that can be extracted from the

entire dataset under study: what is the fraction of tweeters

who supported military intervention? What is the fraction

of tweeters who supported Islamist groups? And how did

these percentages evolve during the days of the coup?

Similarly, when Dodds et al. (2011) use Twitter in order to

study the spatio-temporal patterns of happiness throughout

the US population, they are not interested in how and when

a specific person is happy, but are interested in the con-

clusions that the aggregate data allow them to draw. These

examples are not isolated, and it is fair to say that most (if

not all) TSC studies conducted, e.g., within political sci-

ence (Borge-Holthoefer et al. 2015; Kaya et al. 2013;

Marchetti-Bowick and Chambers 2012), economics (Bol-

len et al. 2011; Connor et al. 2010), social science (Dodds

et al. 2011), and market research (Burton and Soboleva

2011; Qureshi et al. 2013), use Twitter with an interest in

aggregate data and not in individual data.

Without loss of generality, we may say that TSC studies

that focus on the aggregate level are concerned with esti-

mating the prevalence (or ‘‘relative frequency’’) of each

class of interest in the unlabelled dataset, i.e., with esti-

mating the distribution of the unlabelled data across the

classes of interest. This task is known as quantification

(Barranquero et al. 2015; Bella et al. 2010; Esuli and

Sebastiani 2015; Forman 2008; Milli et al. 2013).

The obvious method for dealing with it is ‘‘classify and

count’’, i.e., classifying each unlabelled object via a stan-

dard classifier and estimating class prevalence by counting

the objects that have been labelled with the class. However,

this strategy is suboptimal, since a good classifier is not

necessarily a good ‘‘quantifier’’ (i.e., prevalence estimator).

To see this consider that a binary classifier h1 for which

FP ¼ 20 and FN ¼ 20 (FP and FN standing for the ‘‘false

positives’’ and ‘‘false negatives’’, respectively, it has gen-

erated on a given dataset) is worse than a classifier h2 for

which, on the same test set, FP ¼ 18 and FN ¼ 20. How-

ever, h1 is intuitively a better binary quantifier than h2;

indeed, h1 is a perfect quantifier, since FP and FN are equal

and thus, when it comes to class frequency estimation,

compensate each other, so that the distribution of the test

items across the class and its complement is estimated

perfectly. In other words, a good quantifier needs to have

small bias (i.e., needs to distribute its errors as evenly as

possible across FP and FN).

Recent research (e.g., Barranquero et al. 2015; Bella

et al. 2010; Esuli and Sebastiani 2015; Forman 2008) has

convincingly shown that, since classification and quantifi-

cation pursue different goals, quantification should be

tackled as a task of its own, using different evaluation

measures and, as a result, different learning algorithms.

One reason why it seems sensible to pursue quantification

directly, instead of tackling it via classification, is that

classification is a more general task than quantification:

after all, a perfect classifier is also a perfect quantifier,

while the opposite is not true. A training set might thus

contain information sufficient to generate a good quantifier

but not a good classifier, which means that performing

quantification via ‘‘classify and count’’ might be a subop-

timal way of performing quantification. In other words,

performing quantification via ‘‘classify and count’’ looks

like a violation of ‘‘Vapnik’s principle’’ (Vapnik 1998),

which asserts that ‘‘If you possess a restricted amount of

information for solving some problem, try to solve the

problem directly and never solve a more general problem

as an intermediate step. It is possible that the available

information is sufficient for a direct solution, but is insuf-

ficient for solving a more general intermediate problem.’’

In this paper we show, using 2 learners, 7 quantification-

specific algorithms and 11 different TSC datasets, that

quantification-specific algorithms indeed outperform, at

prevalence estimation, state-of-the-art classification-ori-

ented learning algorithms. We thus argue that researchers

interested in tweet sentiment prevalence should switch to

using quantification-specific (instead of classification-

specific) learning algorithms and evaluation measures.

This paper is an extension of Gao and Sebastiani (2015),

where only experiments on one learner (instead of two),

one quantification-specific algorithm (instead of seven),

and eight TSC datasets (instead of 11) were carried out; the

conclusions that this much larger experimentation allow us

to draw are thus more solidly grounded (and somehow

surprising).

The paper is organized as follows. In Sect. 2, we discuss

previous work in tweet sentiment classification and previ-

ous work in quantification, arguing that these two research

streams have never crossed paths. In order to introduce

tweet sentiment quantification, in Sect. 3 we first look at

the evaluation measures that are used in the quantification

literature. In Sect. 4, we describe the tweet sentiment

quantification systems we compare in this work; one sys-

tem is based on ‘‘traditional’’ classification technology and

other seven systems are based on quantification-specific
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learning algorithms. Section 5 describes the results of our

experiments, while Sect. 6 concludes.

2 Related work

2.1 Quantification methods

Quantification goes under different names in different

fields and different papers. It is variously called prevalence

estimation (Barranquero et al. 2013), counting Lewis

(1995), class probability re-estimation (Alaı́z-Rodrı́guez

2011), class prior estimation (Chan and Ng 2006; Zhang

and Zhou 2010), and class distribution estimation (Gon-

zález-Castro et al. 2013; Limsetto and Waiyamai 2011;

Xue and Weiss 2009).

Different quantification methods have been proposed

over the years, the two main classes being the aggregative

and the non-aggregative methods. While the former require

the classification of each individual item as an intermediate

step, the latter do not, and estimate class prevalences

holistically. Most methods (e.g., the ones described in

Barranquero et al. 2015; Bella et al. 2010; Esuli and

Sebastiani 2015; Forman 2008; Milli et al. 2013) fall in the

former class (all the ones we use in this paper belong to this

category), while the latter has few representatives (e.g.,

González-Castro et al. 2013; King and Lu 2008).

Within the class of aggregative methods, a further

distinction can be made between methods that use gen-

eral-purpose learning algorithms (e.g., Bella et al. 2010;

Forman 2008), sometimes tweaking them or post-pro-

cessing their prevalence estimates to account for their

estimated bias, and methods that instead make use of

learning algorithms explicitly devised for quantification

(e.g., Barranquero et al. 2015; Esuli and Sebastiani 2015;

Milli et al. 2013). Aggregative quantification methods

have a classifier under the hood; the underlying learning

algorithms that have been used for learning such classi-

fiers belong to the classes of kernel machines (Balikas

et al. 2015; Barranquero et al. 2015; Esuli and Sebastiani

2015; Forman 2008), decision trees (Bella et al. 2010;

Milli et al. 2013), memory-based learning algorithms

(Bella et al. 2010), logistic regression (Balikas et al.

2015; Bella et al. 2010; Latinne et al. 2001), and neural

networks (Beijbom et al. 2015; González-Castro et al.

2013); most learning algorithms that have been used are

of the cost-insensitive type, but cost-sensitive algorithms

have been employed too (Xue and Weiss 2009). Quan-

tification has mostly been addressed at the binary level,

although methods for single-label multi-class quantifica-

tion (Bella et al. 2010; Hopkins and King 2010; Saerens

et al. 2002) and ordinal quantification (Da San Martino

et al. 2016; Esuli 2016) have been proposed.

A further distinction is that between batch learning

methods, which require all the training examples to be

loaded in memory at the same time, and incremental

‘‘online’’ methods, which relax this requirement and thus

start learning after the first training examples are loaded in

memory; practically all quantification methods studied up

to now are batch methods, the only exception being the

method discussed in Narasimhan et al. (2016).

2.2 Applications of quantification

Quantification has been applied to fields as diverse as

epidemiology (King and Lu 2008), remote sensing (Latinne

et al. 2001), marine ecology (Beijbom et al. 2015),

resource allocation (Forman 2008), word sense disam-

biguation (Chan and Ng 2006), political science (Hopkins

and King 2010), and veterinary (González-Castro et al.

2013; Sánchez et al. 2008). King and Lu (2008) apply

quantification to the estimation of cause-of-death preva-

lences from ‘‘verbal autopsies’’, i.e., verbal descriptions of

the symptoms suffered from deceased persons before

dying. Latinne et al. (2001) use a quantification approach

in order to interpret automatically the land cover in images

from remote sensing; similarly, Beijbom et al. (2015)

apply quantification to the task of surveying underwater

surfaces that are covered by coral reef. Chan and Ng (2006)

use quantification in order to estimate word sense priors

from a text dataset to disambiguate, so as to tune a word

sense disambiguator to the estimated sense priors; their

work can be seen as an instance of transfer learning (see

e.g., Pan et al. 2012), since the goal is to adapt a word

sense disambiguation algorithm to a domain different from

the one the algorithm was trained upon. Hopkins and King

(2010) estimate the prevalence of support for different

political candidates from blog posts, using the method

pioneered in King and Lu (2008). Forman (2008) uses

quantification for estimating the prevalence of different

issues from logs of calls to customer support; these esti-

mates allow a company to allocate more human resources

to the issues which have elicited more calls. In González-

Castro et al. (2013) and Sánchez et al. (2008) quantifica-

tion is used for establishing the prevalence of damaged

sperm cells in a given sample for veterinary applications.

Saerens et al. (2002) (followed in this by other authors

Alaı́z-Rodrı́guez 2011; Xue and Weiss 2009; Zhang and

Zhou 2010) instead apply quantification to customizing a

trained classifier to the class prevalences of the test set,

with the goal of improving classification accuracy on

unlabelled data exhibiting a class distribution different

from that of the training set. Balikas et al. (2015) use

quantification for model selection in supervised learning,

i.e., they tune hyperparameters by choosing for them the

values that yield the best quantification accuracy on the test
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data; this allows hyperparameter tuning to be performed

without incurring the costs inherent in k-fold cross-

validation.

2.3 Shared tasks involving quantification

Tweet quantification is one of the subjects of the recent

SemEval Task 4 ‘‘Sentiment Analysis in Twitter’’ shared

task (Nakov et al. 2016), where tweets are labelled

according to the sentiment they convey towards a certain

topic. Subtask D consists of a binary quantification task,

and Subtask E consists of an ordinal quantification task

(with tweets labelled according to a five-point scale).

3 Evaluation measures for quantification

Let us look at the measures which are currently being used

in the literature for evaluating quantification error; in Sect.

5 we will use the very same measures in evaluating the

results of our experiments.

The task we tackle in this paper requires estimating the

distribution of a set S of unlabelled tweets across a set C of

available classes; we will typically deal with the case in

which jCj ¼ 3, where the classes are Positive, Negative,

and Neutral. Ours is thus a single-label multi-class

(SLMC) quantification task, and we will thus concentrate

on the measures that have been proposed for evaluating it.

Note that a measure for SLMC quantification is also a

measure for binary quantification, since the latter task is a

special case of the former; this would be relevant for

datasets in which the Neutral class is absent. Note also that

a measure for binary quantification is also a measure for

‘‘multi-label multi-class’’ quantification, since the latter

task can be solved by separately solving jCj instances of the
former task, one for each c 2 C.

Notation-wise, by Kðp; p̂; S; CÞ we will indicate a

quantification loss, i.e., a measure K of the error made in

estimating a distribution p defined on set S and classes C by

another distribution p̂; we will often simply write Kðp; p̂Þ
when S and C are clear from the context.1

The simplest measure for SLMC quantification is ab-

solute error (AE), which corresponds to the average

(across the classes in C) absolute difference between the

predicted class prevalence and the true class prevalence;

i.e.,

AEðp; p̂Þ ¼ 1

jCj
X

c2C
jp̂ðcÞ � pðcÞj ð1Þ

It is easy to show that AE ranges between 0 (best) and

2ð1�min
c2C

pðcÞÞ

jCj

(worst); a normalized version of AE that always ranges

between 0 (best) and 1 (worst) can thus be obtained as

NAEðp; p̂Þ ¼
P

c2C jp̂ðcÞ � pðcÞj
2ð1�min

c2C
pðcÞÞ ð2Þ

The main advantage of AE and NAE is that they are

intuitive, and easy to understand to non-initiates too.

However, AE and NAE do not address the fact that the

same absolute difference between predicted class preva-

lence and true class prevalence should count as a more

serious mistake when the true class prevalence is small. For

instance, predicting p̂ðcÞ ¼ 0:10 when pðcÞ ¼ 0:01 and

predicting p̂ðcÞ ¼ 0:50 when pðcÞ ¼ 0:41 are equivalent

errors according to AE, but the former is intuitively a more

serious error than the latter. Relative absolute error (RAE)

addresses this problem by relativizing the value jp̂ðcÞ �
pðcÞj in Eq. 1 to the true class prevalence, i.e.,

RAEðp; p̂Þ ¼ 1

jCj
X

c2C

jp̂ðcÞ � pðcÞj
pðcÞ ð3Þ

RAE may be undefined in some cases, due to the presence

of zero denominators. To solve this problem, in computing

RAE we can smooth both p(c) and p̂ðcÞ via additive

smoothing, i.e.,

psðcÞ ¼
�þ pðcÞ

�jCj þ
X

c2C
pðcÞ

; ð4Þ

where psðcÞ denotes the smoothed version of p(c) and the

denominator is just a normalizing factor (same for the

p̂sðcÞ’s); the quantity � ¼ 1
2jSj is often used as a smoothing

factor. The smoothed versions of p(c) and p̂ðcÞ are then

used in place of their original versions in Eq. 3; as a result,

RAE is always defined and still returns a value of 0 when p

and p̂ coincide. It is easy to show that RAE ranges between

0 (best) and

jCj � 1þ
1�min

c2C
pðcÞ

min
c2C

pðcÞ

jCj

(worst); a normalized version of RAE that always ranges

between 0 (best) and 1 (worst) can thus be obtained as

NRAEðp; p̂Þ ¼

X

c2C

jp̂ðcÞ � pðcÞj
pðcÞ

jCj � 1þ
1�min

c2C
pðcÞ

min
c2C

pðcÞ

ð5Þ
1 Consistent with most mathematical literature, we use the caret

symbol (^) to indicate estimation.
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A third measure, and the one that has become somehow

standard in the evaluation of SLMC quantification, is

normalized cross-entropy, better known as Kullback–Lei-

bler Divergence (KLD—see e.g., Cover and Thomas

1991). KLD was proposed as an SLMC quantification

measure in Forman (2005), and is defined as

KLDðp; p̂Þ ¼
X

c2C
pðcÞ loge

pðcÞ
p̂ðcÞ ð6Þ

KLD was originally devised as a measure of the ineffi-

ciency incurred when estimating a true distribution p over a

set C of classes by means of a predicted distribution p̂. KLD

is thus suitable for evaluating quantification, since quanti-

fying exactly means predicting how the items in set S are

distributed across the classes in C.
KLD ranges between 0 (best) and þ1 (worst). Note

that, unlike AE and RAE, the upper bound of KLD is not

finite since Eq. 6 has predicted probabilities, and not true

probabilities, at the denominator: that is, by making a

predicted probability p̂ðcÞ infinitely small we can make

KLD be infinitely large. A normalized version of KLD

yielding values between 0 (best) and 1 (worst) may be

defined by applying a logistic function,2 e.g.,

NKLDðp; p̂Þ ¼ 2
eKLDðp;p̂Þ

eKLDðp;p̂Þ þ 1
� 1 ð7Þ

Also KLD (and, as a consequence, NKLD) may be unde-

fined in some cases. While the case in which pðcÞ ¼ 0 is

not problematic (since continuity arguments indicate that

0 log 0
a
should be taken to be 0 for any a� 0), the case in

which p̂ðcÞ ¼ 0 and pðcÞ[ 0 is indeed problematic, since

a log a
0
is undefined for a[ 0. To solve this problem, also in

computing KLD and NKLD we use the smoothed proba-

bilities of Eq. 4; as a result, KLD and NKLD are always

defined and still return a value of zero when p and p̂

coincide.

While KLD is less easy to understand to non-initiates

than AE or RAE, its advantage is that it is a very well-

known measure, having been the subject of intense study

within information theory (Csiszár and Shields 2004) and,

although from a more applicative angle, within the lan-

guage modelling approach to information retrieval and to

speech processing. As a consequence, it has emerged as the

de facto standard in the SLMC quantification literature. We

will thus pick it as the measure to optimize; however, in the

experimental section we will report the results of all our

experiments in terms of all six measures discussed above.

4 Tweet sentiment quantifiers

In this section, we will describe the quantification systems

we will use in our experiments. Like a classification sys-

tem, a system for performing quantification consists of two

main components: (1) an algorithm for converting the

objects of interest (tweets, in our case) into vectorial rep-

resentations that can be interpreted both by the learning

algorithm and, once it has been trained, by the quantifier

itself, and (2) an algorithm for training quantifiers from

vectorial representations of training objects. Section 4.1

describes component (1) while in Sect. 4.2 we describe the

various choices for component (2) that we have compared

experimentally.

4.1 Features for detecting tweet sentiment

For building vectorial representations of tweets we have

followed the approach discussed in Kiritchenko et al.

(2014, Section 5.2.1), since the representations presented

therein are those used in the systems that performed best at

both the SemEval 2013 (Mohammad et al. 2013) and

SemEval 2014 (Zhu et al. 2014) TSC shared tasks.

The text is preprocessed by normalizing URLs and

mentions of users to the constants http://someurl and

@someuser, respectively, after which tokenization and

POS tagging is performed. The binary features used (i.e.,

features denoting presence or absence in the tweet) include

word n-grams, for n 2 f1; 2; 3; 4g, and character n-grams,

for n 2 f3; 4; 5g, whether the last token contains an

exclamation and/or a question mark, whether the last token

is a positive or a negative emoticon and, for each of the

1000 word clusters produced with the CMU Twitter NLP

tool,3 whether any token from the cluster is present. Inte-

ger-valued features include the number of all-caps tokens,

the number of tokens for each POS tag, the number of

hashtags, the number of negated contexts, the number of

sequences of exclamation and/or question marks, and the

number of elongated words (e.g., cooooool).

A key addition to the above is represented by features

derived from both automatically generated and manually

generated sentiment lexicons; for these features, we use the

same sentiment lexicons as used in Kiritchenko et al.

(2014), which are all publicly available. We omit further

details concerning our vectorial representations (and, in

particular, how the sentiment lexicons contribute to them),

both for brevity reasons and because these vectorial rep-

resentations are not the central focus of this paper; the

interested reader is invited to consult Kiritchenko et al.

(2014, Section 5.2.1) for details.2 Since the standard logistic function ex

exþ1
ranges (for the domain

½0;þ1Þ we are interested in) on [1
2
,1], we multiply by 2 in order for it

to range on [1,2], and subtract 1 in order for it to range on [0,1], as

desired. 3 http://www.ark.cs.cmu.edu/TweetNLP/.
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Finally, we should mention the fact that we did not

perform any feature selection, since our learners could

handle the resulting (huge) number of features fairly well

from the standpoint of efficiency.

4.2 Learning to quantify

In order to test our conjecture that using quantification-

specific algorithms, rather than standard classification-ori-

ented ones, delivers superior quantification accuracy, in the

experiments described in Sect. 5 we test seven quantifica-

tion-specific algorithms against a state-of-the-art classifi-

cation-oriented one. This section is devoted to describing

each of them in detail.

Let us fix some notation. We assume a domain D of

objects; a generic object will be indicated by x. We

assume the availability of a set Tr of training objects

(tweets, in our case) and of a set Te of test objects on

which the accuracy of our quantifiers will be evaluated. A

classifier (or hypothesis) trained on Tr will be denoted by

h : D ! C, where D is our domain of interest (the set of

tweets) and C is the set of classes (Positive, Negative,

Neutral, in our case). By psðcÞ we will denote the true

prevalence of class c 2 C in set s, while by p̂Ms ðcÞ we will

denote the prevalence of class c 2 C in set s as estimated

via method M.

4.3 Classify and count (CC)

An obvious method for quantification consists of training a

classifier from Tr via a standard learning algorithm, clas-

sifying the objects in Te, and estimating pTe by simply

counting the fraction of objects in Te that are predicted to

belong to the class. If by ĉ we denote the event ‘‘class c has

been assigned by the classifier’’, so that pTeðĉÞ represents

the fraction of test documents that have been assigned c by

the classifier, this corresponds to computing

p̂CCTe ðcÞ ¼ pTeðĉÞ

¼ jfx 2 TejhðxÞ ¼ cgj
jTej

ð8Þ

Forman (2008) calls this the classify and count (CC)

method. This is the classification-oriented method we will

use as a baseline in our experiments, and that will be

contrasted with seven quantification-specific methods.

4.4 Probabilistic classify and count (PCC)

A variant of CC consists in generating a classifier from Tr,

classifying the objects in Te, and computing pTeðcÞ as the
expected fraction of objects predicted to belong to c. If by

pðcjxÞ we indicate the posterior probability, i.e., the

probability of membership in c of test object x as estimated

by the classifier, and by E[x] we indicate the expected

value of x, this corresponds to computing

p̂PCCTe ðcÞ ¼ E½pTeðĉÞ�

¼ 1

jTej
X

x2Te
pðcjxÞ ð9Þ

The rationale of PCC is that posterior probabilities contain

richer information than binary decisions, which are usually

obtained from posterior probabilities by thresholding.

If the classifier only returns confidence scores that are

not probabilities (as is the case, e.g., when the scores do not

range on [0,1]), the former must be converted into true

probabilities. If the score is a monotonically increasing

function of the classifier’s confidence in the fact that the

object belongs to the class, this may be obtained by

applying a logistic function. Well-calibrated probabilities

(defined as the probabilities such that the prevalence psðcÞ
of a class c in a set s is equal to

P
x2s pðcjxÞ) may be

obtained by using a generalized logistic function; see e.g.,

Berardi et al. (2015, Section 4.4), for details.

The PCC method is dismissed as unsuitable in Forman

(2005, 2008), on the grounds that, when the training set

distribution pTr and the test set distribution pTe are different

(as they should be assumed to be in any application of

quantification), probabilities calibrated on Tr (Tr being the

only available set where calibration may be carried out)

cannot be, by definition, calibrated for Te at the same time.

Experimental evidence on PCC is not conclusive, since

PCC performed better than CC in the experiments of Bella

et al. (2010) (where it is called ‘‘Probability Average’’) and

Tang et al. (2010), but underperformed CC in the (much

more extensive) experiments of Esuli and Sebastiani

(2015).

4.5 Adjusted classify and count (ACC)

Forman (2005, 2008) uses a further method which he calls

‘‘Adjusted Count’’, and which we will call (consistently

with Esuli and Sebastiani 2015) adjusted classify and count

(ACC) so as to make its relation with CC more explicit.

ACC is based on the observation that, thanks to the law

of total probability, it holds that

pTeðĉjÞ ¼
X

ci;cj2C
pTeðĉjjciÞ � pTeðciÞ ð10Þ

Here, pTeðĉjjciÞ represents the fraction of test documents

belonging to ci that have been instead assigned c by the

classifier. Note that, once the classifier has been trained

and applied to Te, the quantity pTeðĉjÞ can be observed,

and the quantity pTeðĉjjciÞ can be estimated from Tr via k-

fold cross-validation; the quantity pTeðciÞ is instead

 19 Page 6 of 22 Soc. Netw. Anal. Min.  (2016) 6:19 

123



unknown, and is indeed the quantity we want to estimate.

Since there are jCj equations of the type described in

Eq. 10 (one for each possible ĉj), and since there are jCj
quantities of type pTeðciÞ to estimate (one for each choice

of ci), we are in the presence of a system of jCj linear
equations in jCj unknowns. This system can be solved via

standard techniques, thus yielding the required p̂TeðciÞ
estimates.

One problem with ACC is that it is not guaranteed to

return a value in [0,1], due to the fact that the estimates of

pTeðĉjjciÞ may be imperfect. This has lead most authors

(see e.g., Forman 2008) to (i) ‘‘clip’’ the p̂TeðciÞ estimates

(i.e., equate to 1 every value higher than 1 and to 0 every

value lower than 0), and (ii) rescale them so that they sum

up to 1.

4.6 Probabilistic adjusted classify and count

(PACC)

The PACC method (proposed in Bella et al. 2010, where it

is called ‘‘Scaled Probability Average’’) is a probabilistic

variant of ACC, i.e., it stands to ACC like PCC stands to

CC. Its underlying idea is to replace, in Eq. 10, pTeðĉjÞ and
pTeðĉjjciÞ with their expected values. Equation 10 is thus

transformed into

E½pTeðĉjÞ� ¼
X

ci;cj2C
E½pTeðĉjjciÞ� � pTeðciÞ ð11Þ

where

E½pTeðĉjÞ� ¼
1

jTej
X

x2Te
pðcjjxÞ

E½pTeðĉjjciÞ� ¼
1

jTeij
X

x2Tei
pðcjjxÞ

ð12Þ

and Tei indicates the set of objects in Te whose true class is

ci. Like for ACC, once the classifier has been trained and

applied to Te, the quantity E½pTeðĉjÞ� can be observed, and

the quantity E½pTeðĉjjciÞ� can be estimated from Tr via k-

fold cross-validation, which means that we are again in the

presence of a system of jCj linear equations in jCj
unknowns, that we can solve by standard techniques. Like

ACC, also PACC can return p̂TeðciÞ, i.e., estimates of

pTeðciÞ, that fall off the [0,1] range; again, clipping and

rescaling is the only solution in these cases.

Like PCC, also PACC is dismissed as unsuitable in

Forman (2005, 2008), for the same reasons for which

PCC was also dismissed. Unlike in the case of PCC,

published experimental evidence seems instead in favour

of PACC, since the experimental results published in

Bella et al. (2010), Esuli and Sebastiani (2015) and Tang

et al. (2010) indicate PACC to outperform all of CC,

PCC, and ACC.

4.7 Expectation maximization for quantification

(EMQ)

EMQ, proposed by Saerens et al. (2002), is an instance

of Expectation Maximization (Dempster et al. 1977), a

well-known iterative algorithm for finding maximum-

likelihood estimates of parameters (in our case: the class

prevalences) for models that depend on unobserved

variables (in our case: the class labels). Essentially,

EMQ (see Algorithm 1) incrementally updates (Line 10)

the posterior probabilities by using the class prevalences

computed in the last step of the iteration, and updates

(Line 14) the class prevalences by using the posterior

probabilities computed in the last step of the iteration, in

a mutually recursive fashion.

Input : Class prevalences pTr(c) on Tr, for all c ∈ C;
Posterior probabilities p(c|x), for all c ∈ C and for all x ∈ Te;

Output: Estimates p̂Te(c) of class prevalences on Te;

/* Initialization */
1 s ← 0;
2 for c ∈ C do
3 p̂

(s)
Te(c) ← pTr(c);

4 for x ∈ Te do
5 p(s)(c|x) ← p(c|x);
6 end
7 end

/* Main Iteration Cycle */
8 while stopping condition = false do
9 s ← s+ 1;

10 for c ∈ C do
11 for x ∈ Te do

12 p(s)(c|x) ←

p̂
(s)
Te(c)

p̂
(0)
Te (c)

· p(0)(c|x)

c∈C

p̂
(s)
Te(c)

p̂
(0)
Te (c)

· p(0)(c|x)

13 end

14 p̂
(s)
Te(c) ← 1

|Te|
x∈Te

p(s−1)(c|x)

15 end
16 end

/* Generate output */
17 for c ∈ C do
18 p̂Te(c) ← p̂

(s)
Te(c)

19 end

Algorithm 1: The EMQ algorithm Saerens et al. (2002)

4.8 SVMs optimized for KLD (SVM(KLD))

SVM(KLD), proposed in Esuli and Sebastiani (2010,

2015), is an instantiation of Thorsten Joachims’ SVM-perf

(Joachims 2005) that uses KLD as the loss to optimize.4

SVM-perf is a ‘‘structured output prediction’’ algorithm in

the support vector machines (SVMs) family. Unlike tradi-

tional SVMs, SVM-perf is capable of optimizing any

nonlinear, multivariate loss function that can be computed

from a contingency table (as all the measures presented in

Sect. 3 are). Instead of handling hypotheses h : X ! Y that

map an individual item (in our case: a tweet) xi into an

4 In Joachims (2005), SVM-perf is actually called SVM-multi, but

the author has released its implementation under the name SVM-perf;

we will thus use this latter name.
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individual label yi, SVM-perf considers hypotheses �h :
�X ! �Y that map entire tuples of items (in our case: entire

sets of tweets) �x ¼ ðx1; . . .; xnÞ into tuples of labels

�y ¼ ðy1; . . .; ynÞ. Instead of learning the traditional

hypotheses of type

hðxÞ ¼ signðw � xþ bÞ ð13Þ

SVM-perf thus learns hypotheses of type

�hð�xÞ ¼ argmax
�y2 �Y

ðw �Wð�x; �yÞÞ; ð14Þ

where w is the vector of parameters to be learnt during

training and

Wð�x; �yÞ ¼
Xn

i¼1

xiyi ð15Þ

(the joint feature map) is a function that scores the pair of

tuples ð�x; �yÞ according to how ‘‘compatible’’ �x and �y are. In
other words, while classifiers trained via traditional SVMs

classify individual instances x one at a time, models trained

via SVM-perf classify entire sets �x of instances in one shot,

and can thus make the labels assigned to the individual

items mutually depend on each other. This is of funda-

mental importance in quantification, where, say, an addi-

tional false positive may even be beneficial when the rest of

the data is expected to contain more false negatives than

false positives.

While the optimization problem of classic soft-margin

SVMs consists of finding

arg min
w;ni � 0

1

2
w � wþ C

XjTrj

i¼1

ni

such that y0i½w � x0i þ b� � ð1� niÞ
for all i 2 f1; . . .; jTrjg

ð16Þ

(where the ðx0i; y0iÞ denote the training examples), the cor-

responding problem of SVM-perf consists instead of

finding

arg min
w;n� 0

1

2
w � wþ Cn

such that w � ½Wð�x0; �y0Þ �Wð�x0; �yÞ þ b�
�Kð�y0; �yÞ � n for all �y 2 �Y=�y0;

ð17Þ

where ð�x0; �y0Þ indicates a sequence of training examples and

the corresponding sequence of their true labels. Here, the

relevant fact to observe is that the multivariate loss K
explicitly appears in the optimization problem.

We refer the interested reader to Joachims (2005), Joa-

chims et al. (2009) and Tsochantaridis et al. (2005) for

more details on SVM-perf (and on SVMs for structured

output prediction in general). From the point of view of the

user interested in applying it to a certain task, the

implementation of SVM-perf made available by its author

is essentially an off-the-shelf package, since for cus-

tomizing it to a specific loss K one only needs to write a

small module that describes how to compute K from a

contingency table.

4.9 SVMs optimized for NKLD (SVM(NKLD))

SVM(NKLD), originally discussed in Esuli and Sebastiani

(2014), is just a minor variation of SVM(KLD), the only

difference being that NKLD (as from Eq. 7), is the loss

function being minimized.

4.10 SVMs optimized for Q (SVM(Q))

SVM(Q), originally proposed in Barranquero et al. (2015),

is (like SVM(KLD) and SVM(NKLD)) an instantiation of

SVM-perf. The authors optimize a ‘‘multi-objective’’

measure (which they call Q-measure) that combines clas-

sification accuracy and quantification accuracy; the ratio-

nale is that by maximizing both measures at the same time,

one tends to obtain quantifiers that are not just effective

(thanks to the high quantification accuracy), but also reli-

able (thanks to the high classification accuracy). The

authors’ Q-measure is

Qbðp; p̂Þ ¼
ðb2 þ 1ÞCcðp; p̂Þ � Cqðp; p̂Þ
b2Ccðp; p̂Þ þ Cqðp; p̂Þ

ð18Þ

where Cc and Cq are a measure of classification ‘‘gain’’ (the

opposite of loss) and a measure of quantification gain,

respectively, and 0� b� þ1 is a parameter that controls

the relative importance of the two; for b ¼ 0 the Qb

measure coincides with Cc, while when b tends to þ1, Qb

asymptotically tends to Cq.

As a measure of classification gain the authors use

recall, while as a measure of quantification gain they use

ð1� NAEÞ, where NAE is as defined in Eq. 2. The

authors motivate the (apparently strange) decision to use

recall as a measure of classification gain with the fact

that, while recall by itself is not a suitable measure of

classification gain (since it is always possible to arbi-

trarily increase recall at the expense of precision or

specificity), to include precision or specificity in Qb is

unnecessary, since the presence of Cq in Qb has the

effect of ruling out anyway those hypotheses character-

ized by high recall and low precision/specificity (since

these hypotheses are indeed penalized by Cq).
5

5 SVM-perf is available from http://svmlight.joachims.org/svm_struct.

html, while themodule that customizes it toKLD is available fromhttp://

hlt.isti.cnr.it/quantification/. The code for all the othermethods discussed

in this section is available from http://alt.qcri.org/*wgao/codes/tweet_

sentiment_quantification.zip.
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5 Experiments

5.1 Datasets

We have carried out our experiments on a variety of TSC

datasets previously used in the literature; the main char-

acteristics of these datasets are listed in Table 1. The

SemEval2013, SemEval2014, SemEval2015, and SemE-

val2016 datasets are described more in detail in Nakov

et al. (2013), Rosenthal et al. (2014, 2015), and Nakov

et al. (2016), respectively, while all of the other datasets

(Sanders, SST, OMD, HCR, GASP, WA, WB) are

described in detail in Saif et al. (2013). Our choice of

datasets has followed two main guidelines, i.e., (1)

selecting publicly available datasets, so as to guarantee a

high level of replicability, and (2) selecting datasets whose

sentiment labels are the result of manual annotation, so as

to guarantee high label quality.6

It is well known that, when Twitter data are concerned, the

replicability of experimental results is limited since, due to

terms of use imposed by Twitter, the datasets made available

by researchers cannot contain the tweets themselves, but

only consists of their ids; the tweets corresponding to some of

the ids may become unavailable over time, which means that

the datasets we use here are typically subsets of the original

datasets. Luckily enough, this problem affects us only mar-

ginally since (1) of the four SemEval datasets we owned an

original copy before starting this research, and (2) we were

able to recover all of the original tweets in all of the other

datasets (except for Sanders).

Most of the above datasets classify tweets across the

three classes Positive, Negative, Neutral; some others

(Sanders, OMD, HCR, GASP, WA, WB) also use addi-

tional classes (e.g., Mixed, Irrelevant, Other), and SST

uses ten different levels of sentiment strength (from

VeryPositive to VeryNegative). For reasons of unifor-

mity, we have removed the tweets belonging to the addi-

tional classes (Sanders, OMD, HCR, GASP, WA, WB),

and converted sentiment strengths into Positive, Negative,

Neutral using the same heuristics as described in Saif et al.

(2013) (SST); in all of the datasets we use, the task is thus

to quantify the Positive, Negative, Neutral classes, which

represent a partition of the dataset.

Because of the reasons above, the numbers reported in

Table 1 refer not to the original datasets but to the versions

we have used.7

Table 1 lists our 11 datasets in increasing order of their

distribution drift, i.e., of how differently the training set

and the test set are distributed across the three classes of

interest. Distribution drift can be measured by any of the

six evaluation measures we have discussed in Sect. 3. It

turns out that AE, NAE, KLD, NKLD, return exactly the

same ranking of our 11 datasets, while RAE and NRAE

each return a slightly different ranking. In Table 1 we thus

use the ranking returned by AE, NAE, KLD (for which we

also report actual values), NKLD, since it is the one most

measures agree upon.

Table 1 Datasets used in this work and their main characteristics

Dataset # of features used # of training tweets # of held-out tweets # of test tweets Total # of tweets Distribution drift

LD Sanders 229,399 1847 308 923 3078 0.000027

WB 404,333 3650 609 1823 6082 0.000035

SemEval2016 889,504 6000 2000 2000 10,000 0.000289

GASP 694,582 7532 1256 3765 12,553 0.000434

MD OMD 199,151 1576 263 787 2626 0.001344

WA 248,563 1872 312 936 3120 0.002127

SemEval2013 1,215,742 9684 1654 3813 15,151 0.003827

HD SST 376,132 2546 425 1271 4242 0.008259

SemEval2015 1,215,742 9684 1654 2390 13,728 0.008566

HCR 222,046 797 797 798 2392 0.018663

SemEval2014 1,215,742 9684 1654 1853 13,191 0.051052

The last column indicates distribution drift measured in terms of KLDðpTe; pTrÞ, i.e., indicates how much the distribution of the data across the

three classes in the test set diverges from that in the training set, with higher values indicating higher divergence. The datasets are listed in

increasing order of their KLDðpTe; pTrÞ value, and grouped into low-drift (LD), medium-drift (MD), and high-drift ones (HD); using any of AE,

NAE, NKLD in place of KLD would have generated the same ranking

6 This means that we avoid STC datasets in which the labels are

automatically derived from, say, the emoticons present in the tweets.

7 In order to enhance the reproducibility of our experimental results,

we make available (at http://alt.qcri.org/*wgao/data/SNAM/tweet_

sentiment_quantification.zip) the vectorial representations we have

generated for all the datasets (split into training / validation / test sets)

used in this paper.
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For better convenience, we have broken down the 11

datasets into three groups, based on distribution drift:

1. Sanders, WB, Semeval2016, GASP, are the low-drift

(LD) datasets, characterized by values KLDðpTe; pTrÞ
\0:0005; the results obtained on these datasets are

reported in Table 2;

2. OMD, WA, Semeval2013, are the medium-drift (MD)

datasets, characterized by values 0:0005\KLD

ðpTe; pTrÞ\0:0050; the results obtained on these

datasets are reported in Table 3;

3. SST, Semeval2015, HCR, Semeval2014, are the high-

drift (HD) datasets, characterized by values KLD

ðpTe; pTrÞ[ 0:0050; the results obtained on these

datasets are reported in Table 4.

In order to allow better insight into the behaviour of our

quantification methods, we will break down the experi-

mental results we obtain according to these three groups.

5.2 Experiments with SVMs as a base learner

In the experiments we describe in this section, on each

dataset we compare the quantification-specific learning

algorithms of Sect. 4.2 (PCC, ACC, PACC, EMQ,

SVM(KLD), SVM(NKLD), SVM(Q)) against a baseline

(CC) consisting of a representative, state-of-the-art, clas-

sification-specific learning algorithm. For the CC baseline

we use a standard SVM with a linear kernel, in the

implementation made available in the LIBSVM system8

(Chang and Lin 2011); it is a strong baseline, and is

(among others) the learning algorithm used in the systems

that performed best at both the SemEval 2013 (Mohammad

et al. 2013) and SemEval 2014 (Zhu et al. 2014) STC

shared tasks. While SVM(KLD), SVM(NKLD), and

SVM(Q) explicitly minimize KLD, NKLD, and Q-mea-

sure, resp., the above baseline minimizes the well-known

Hinge Loss.

All eight quantification methods use the same vectorial

representations, as described in Sect. 4.1. All the learning

algorithms we discuss in this section are based on SVMs.

The rationale of this choice was (1) to obtain high accuracy

throughout the spectrum of the eight quantification meth-

ods tested, given that SVMs are known to deliver high

accuracy across different text mining tasks, and (2) to

allow a fair comparison between (a) SVM(KLD),

SVM(NKLD), SVM(Q), which are inherently based on

SVM technology, and (b) CC, PCC, ACC, PACC, EMQ,

which could in principle have relied on other learning

technologies (e.g., a naı̈ve Bayesian classifier).

For PCC, ACC, PACC, EMQ, we use the same output

that was generated by the LIBSVM-based classifier dis-

cussed in the previous paragraph, and that is used for the

CC baseline. Note that PCC, PACC, EMQ, do not require

as output the classifier’s binary decisions, but the posterior

probabilities generated by the classifier. Since SVMs do

not natively generate posterior probabilities, we use the -b

option of LIBSVM, which converts the scores originally

generated by SVMs into posterior probabilities according

to the algorithm described in Wu et al. (2004).

For each of the eight quantification methods we have

optimized the C parameter (which sets the tradeoff between

the training error and the margin—see Eqs. 16 and 17) via

validation on a separate held-out set, performing a grid

search on all values of type 10x with x 2 f�6; . . .; 7g; we
have optimized C individually for each (method, dataset)

pair.Wehave instead left the other parameters at their default

value; in particular, we have used a linear kernel. For the

EMQ algorithm, we stop the iteration when
P

c2C jp̂
ðsÞ
Te ðcÞ � p̂

ðs�1Þ
Te ðcÞj\10�10. For the SVM(Q) method

we have set the b parameter (see Eq. 18) to 2, as recom-

mended in Barranquero et al. (2015). Some of the datasets

we use (SemEval2013, SemEval2014, SemEval2015,

SemEval2016, and HCR) already come with a predefined

split between training set and held-out set, with (for the

SemEval2013, SemEval2014, SemEval2015 datasets)

roughly six times as many training items as held-out items;9

for the datasets where such split is not predefined, we have

randomly selected the held-out examples from the training

examples, using the same ratio as in the SemEval2013,

SemEval2014, SemEval2015 datasets. For all datasets, after

the optimal parameter values have been selected we have

retrained the classifier on the union of the training and the

held-out sets.

As noted in Sect. 3, ours is a single-label multi-class

task. This does not pose any problem to our baseline

system, since LIBSVM is equipped with a built-in

SLMC option; this ensures that the baseline is a strong

one. It instead poses a problem to SVM(KLD),

SVM(NKLD), SVM(Q), which are binary learning

algorithms. We circumvent this problem by (1) using

each of SVM(KLD), SVM(NKLD), SVM(Q) to train jCj
‘‘one-against-all’’ binary predictors, (2) having each

binary predictor output a prevalence estimate for the

corresponding class, and (3) normalizing these preva-

lence estimates so that they sum up to 1. For these three

methods, the optimization of the C parameter mentioned

8 The SVM-based implementation of CC is called SVM(HL) in Gao

and Sebastiani (2015). LIBSVM is available from http://www.csie.

ntu.edu.tw/*cjlin/libsvm/.

9 At the time of writing this paper, the test set of the SemEval2016

collection has not yet been made available. However, the data made

available by the organizers were already pre-split into three subsets,

called ‘‘train’’, ‘‘dev’’, and ‘‘devtest’’; we have thus used these subsets

as the training set, held-out set, and test set, respectively.
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in the previous paragraph is carried out individually for

each ‘‘one-against-all’’ binary predictor.

The overall results of our SVM-based experiments are

reported in Table 5; for each quantification method we

present (a) the score (averaged across the 11 datasets)

obtained by the method according to each of the six eval-

uation measures we consider, and (b) the relative deterio-

ration in accuracy brought about by each method with

respect to the best-performing system.

In Tables 2, 3 and 4, we report the results obtained by

our methods on each individual dataset, where the datasets

are clustered into the three groups identified in Sect. 5.1. In

each such table, aside from the results obtained by each

method for each of the six considered evaluation measures

(columns 6–11), we report the class distribution computed

for each dataset by each method (columns 3–5), which can

be easily compared with the actual class distributions in the

training set and in the test set.

Table 3 Same as Table 2, but obtained on three medium-drift datasets

Dataset System Pos Neu Neg AE NAE RAE NRAE KLD NKLD

OMD [Training] 0.266 0.271 0.463 – – – – – –

[Test] 0.280 0.283 0.437 – – – – – –

CC 0.238 0.225 0.537 0.0668 0.1391 0.1949 0.1278 0.0205 0.0102

PCC 0.265 0.282 0.453 0.0107 0.0222 0.0312 0.0205 0.0007 0.0003

ACC 0.268 0.311 0.420 0.0184 0.0384 0.0585 0.0383 0.0018 0.0009

PACC 0.286 0.262 0.452 0.0142 0.0295 0.0440 0.0288 0.0012 0.0006

EMQ 0.243 0.381 0.376 0.0649 0.1352 0.2047 0.1342 0.0210 0.0105

SVM(KLD) 0.306 0.238 0.456 0.0305 0.0635 0.0999 0.0655 0.0057 0.0029

SVM(NKLD) 0.331 0.298 0.371 0.0437 0.0910 0.1279 0.0839 0.0100 0.0050

SVM(Q) 0.356 0.301 0.343 0.0624 0.1299 0.1826 0.1197 0.0211 0.0105

WA [Training] 0.281 0.414 0.305 – – – – – –

[Test] 0.272 0.446 0.282 – – – – – –

CC 0.284 0.423 0.293 0.0149 0.0308 0.0437 0.0281 0.0010 0.0005

PCC 0.290 0.405 0.305 0.0267 0.0551 0.0781 0.0502 0.0033 0.0017

ACC 0.276 0.448 0.276 0.0039 0.0081 0.0129 0.0083 0.0001 0.0000

PACC 0.280 0.446 0.273 0.0059 0.0121 0.0206 0.0132 0.0002 0.0001

EMQ 0.297 0.397 0.306 0.0324 0.0669 0.0949 0.0610 0.0049 0.0024

SVM(KLD) 0.175 0.533 0.292 0.0647 0.1335 0.1957 0.1258 0.0307 0.0153

SVM(NKLD) 0.226 0.433 0.341 0.0393 0.0811 0.1357 0.0872 0.0100 0.0050

SVM(Q) 0.327 0.326 0.348 0.0798 0.1645 0.2332 0.1498 0.0311 0.0155

SemEval2013 [Training] 0.371 0.470 0.159 – – – – – –

[Test] 0.412 0.430 0.158 – – – – – –

CC 0.318 0.575 0.107 0.0965 0.1718 0.2952 0.1206 0.0431 0.0216

PCC 0.360 0.480 0.160 0.0349 0.0621 0.0861 0.0352 0.0063 0.0032

ACC 0.338 0.556 0.107 0.0839 0.1493 0.2660 0.1087 0.0338 0.0169

PACC 0.348 0.544 0.108 0.0759 0.1351 0.2451 0.1001 0.0284 0.0142

EMQ 0.339 0.543 0.119 0.0750 0.1335 0.2287 0.0935 0.0258 0.0129

SVM(KLD) 0.304 0.538 0.158 0.0722 0.1286 0.1720 0.0703 0.0290 0.0145

SVM(NKLD) 0.305 0.458 0.237 0.0714 0.1271 0.2756 0.1126 0.0328 0.0164

SVM(Q) 0.295 0.479 0.226 0.0782 0.1393 0.2775 0.1134 0.0349 0.0175

Average MD CC – – – 0.0594 0.1139 0.1780 0.0922 0.0215 0.0108

PCC – – – 0.0241 0.0465 0.0651 0.0353 0.0034 0.0017

ACC – – – 0.0354 0.0653 0.1125 0.0518 0.0119 0.0060

PACC – – – 0.0320 0.0589 0.1032 0.0474 0.0099 0.0050

EMQ – – – 0.0574 0.1118 0.1761 0.0962 0.0172 0.0086

SVM(KLD) – – – 0.0558 0.1085 0.1559 0.0872 0.0218 0.0109

SVM(NKLD) – – – 0.0515 0.0997 0.1797 0.0946 0.0176 0.0088

SVM(Q) – – – 0.0735 0.1445 0.2311 0.1276 0.0290 0.0145
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Table 4 Same as Table 2, but obtained on four high-drift datasets

Dataset System Pos Neu Neg AE NAE RAE NRAE KLD NKLD

SST [Training] 0.288 0.452 0.260 – – – – – –

[Test] 0.312 0.481 0.207 – – – – – –

CC 0.223 0.560 0.217 0.0597 0.1130 0.1671 0.0860 0.0221 0.0111

PCC 0.287 0.465 0.249 0.0277 0.0523 0.1051 0.0541 0.0051 0.0025

ACC 0.306 0.469 0.225 0.0121 0.0228 0.0442 0.0228 0.0010 0.0005

PACC 0.305 0.462 0.232 0.0169 0.0320 0.0611 0.0314 0.0019 0.0009

EMQ 0.278 0.488 0.234 0.0227 0.0430 0.0844 0.0434 0.0036 0.0018

SVM(KLD) 0.304 0.427 0.269 0.0413 0.0780 0.1458 0.0750 0.0110 0.0055

SVM(NKLD) 0.329 0.368 0.303 0.0749 0.1417 0.2497 0.1285 0.0331 0.0165

SVM(Q) 0.306 0.386 0.308 0.0671 0.1269 0.2343 0.1206 0.0293 0.0147

SemEval2015 [Training] 0.371 0.470 0.159 – – – – – –

[Test] 0.434 0.413 0.153 – – – – – –

CC 0.270 0.591 0.139 0.1188 0.2103 0.3006 0.1196 0.0726 0.0363

PCC 0.321 0.468 0.211 0.0754 0.1336 0.2578 0.1025 0.0301 0.0151

ACC 0.263 0.558 0.179 0.1143 0.2024 0.3060 0.1217 0.0694 0.0347

PACC 0.269 0.539 0.192 0.1099 0.1946 0.3136 0.1247 0.0627 0.0314

EMQ 0.264 0.541 0.196 0.1138 0.2015 0.3278 0.1304 0.0677 0.0338

SVM(KLD) 0.256 0.519 0.225 0.1185 0.2099 0.3789 0.1507 0.0755 0.0377

SVM(NKLD) 0.261 0.441 0.298 0.1155 0.2045 0.4720 0.1877 0.0918 0.0458

SVM(Q) 0.245 0.473 0.282 0.1263 0.2236 0.4762 0.1894 0.0991 0.0495

HCR [Training] 0.243 0.211 0.546 – – – – – –

[Test] 0.193 0.167 0.640 – – – – – –

CC 0.139 0.173 0.687 0.0359 0.0646 0.1300 0.0558 0.0110 0.0055

PCC 0.225 0.205 0.570 0.0467 0.0841 0.1676 0.0719 0.0103 0.0051

ACC 0.180 0.198 0.622 0.0208 0.0375 0.0948 0.0407 0.0033 0.0017

PACC 0.171 0.179 0.650 0.0151 0.0271 0.0684 0.0293 0.0019 0.0010

EMQ 0.163 0.197 0.640 0.0204 0.0368 0.1131 0.0485 0.0051 0.0026

SVM(KLD) 0.131 0.221 0.648 0.0414 0.0745 0.2191 0.0941 0.0201 0.0100

SVM(NKLD) 0.190 0.258 0.553 0.0604 0.1087 0.2324 0.0998 0.0248 0.0124

SVM(Q) 0.269 0.283 0.449 0.1272 0.2291 0.4600 0.1975 0.0753 0.0376

SemEval2014 [Training] 0.371 0.470 0.159 – – – – – –

[Test] 0.530 0.361 0.109 – – – – – –

CC 0.404 0.513 0.084 0.1010 0.1701 0.2967 0.0876 0.0464 0.0232

PCC 0.439 0.425 0.136 0.0607 0.1022 0.1988 0.0587 0.0168 0.0084

ACC 0.488 0.445 0.067 0.0562 0.0946 0.2341 0.0691 0.0217 0.0108

PACC 0.506 0.454 0.040 0.0621 0.1045 0.3131 0.0925 0.0519 0.0259

EMQ 0.498 0.430 0.072 0.0458 0.0772 0.1957 0.0578 0.0149 0.0074

SVM(KLD) 0.403 0.473 0.124 0.0843 0.1419 0.2268 0.0670 0.0333 0.0167

SVM(NKLD) 0.404 0.420 0.176 0.0836 0.1408 0.3367 0.0994 0.0366 0.0183

SVM(Q) 0.377 0.452 0.171 0.1018 0.1713 0.3680 0.1087 0.0500 0.0250

Average HD CC – – – 0.0788 0.1395 0.2236 0.0872 0.0381 0.0190

PCC – – – 0.0526 0.0930 0.1823 0.0718 0.0156 0.0078

ACC – – – 0.0508 0.0893 0.1698 0.0636 0.0238 0.0119

PACC – – – 0.0510 0.0896 0.1890 0.0695 0.0296 0.0148

EMQ – – – 0.0507 0.0896 0.1803 0.0700 0.0228 0.0114

SVM(KLD) – – – 0.0714 0.1261 0.2427 0.0967 0.0350 0.0175

SVM(NKLD) – – – 0.0836 0.1489 0.3227 0.1289 0.0466 0.0233

SVM(Q) – – – 0.1056 0.1877 0.3846 0.1540 0.0634 0.0317
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Let us start from discussing the overall results in

Table 5. A first observation we can make is that the six

measures we use are in substantial agreement over which

method is better than which other. In Table 5 the methods

are ranked by their KLD value, but ranking them by any

other measure would not have changed the ranking much.

In fact, AE, NAE, RAE, NRAE only disagree with KLD,

NKLD on which between EMQ and PACC is better, and

NRAE disagrees with all others on which between

SVM(KLD) and CC is better; however, all six measures

agree everywhere else.

If we want to compare the learning methods with each

other, Table 5 clearly says that PCC is the best method,

according to all six measures. Since the key to PCC’s

performance is the accuracy of the posterior probabilities it

receives as input, this is an indirect indication that the

method of Wu et al. (2004), which is used in LIBSVM to

map confidence scores into posterior probabilities, is an

effective one. Note also that EMQ is substantially outper-

formed by PCC, which coincides with EMQ when this

latter is stopped after one iteration only; it thus looks like

iterations beyond the first, which were carried out in order

to obtain convergence, were actually detrimental, instead

of beneficial, to the accuracy of EMQ.

The success of PCC might come as a surprise in the light

of the results of Esuli and Sebastiani (2015), whose

extensive experiments had shown SVM(KLD) to clearly

outperform PCC (and other methods tested here such as

CC, ACC, PACC). However, a closer look at the results of

Esuli and Sebastiani (2015) shows that SVM(KLD) was the

best quantifier only on low-prevalence classes

(pTeðcÞ\0:01) or mid-prevalence classes

(0:01� pTeðcÞ\0:10), but was not on high-prevalence

classes (pTeðcÞ� 0:10), where it was outperformed (among

others) by PACC and ACC; and all 3 classes in all our 11

datasets (with the only exception of Positive in GASP) are

indeed high-prevalence classes. This is interesting in view

of the fact that the task analysed in Esuli and Sebastiani

(2015) (multi-label classification by topic) and the one we

analyse here (sentiment classification) are quite different

when it comes to class distributions. Multi-label classifi-

cation by topic generally uses a large set of classes (often in

the form of a complex taxonomy), and these large sets

usually exhibit a power-law behaviour, with very few high-

prevalence classes and very many mid- or low-prevalence

classes; in these settings, as shown in Esuli and Sebastiani

(2015), SVM(KLD) seems to shine. Instead, sentiment

classification generally uses few classes (usually: two or

three), which are usually high-prevalence, and the present

paper seems to suggest that SVM(KLD) is suboptimal in

these contexts. While this certainly deserves further

investigation, we may hypothesize that, while SVM(KLD)

might be the best choice for multi-label classification byT
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topic, it is instead not in sentiment classification, which is

characterized by radically different class distributions. The

present work seems to indicate that, in these contexts, PCC

is the method of choice.

If we look at the results on the individual datasets (see

Tables 2, 3, 4), the superiority of PCC seems even more

blatant. Out of 66 combinations of 11 datasets � 6 eval-

uation measures, PCC is the best performer in 34, while

ACC is in 18, PACC is in 8, and EMQ is in 6. If we look at

the average results on low-drift and mid-drift datasets,

PCC is always the best performer; on high-drift datasets,

PCC is the best according to two measures, ACC is the best

according to three measures, while EMQ prevails accord-

ing to one measure.

These latter figures highlight the (somehow surprising)

absence, from the lot of the best performers, of the three

methods based on structured prediction (SVM(KLD),

SVM(NKLD), SVM(Q)), which would seem the better

motivated ones from a theoretical point of view. These

three methods are here the worst among the quantification-

specific algorithms, with SVM(NKLD), SVM(Q) even

beaten by standard CC. One possible explanation might be

the fact that, as mentioned in Sect. 5.2, unlike the other

methods these three methods are binary in nature (since

there is no known multi-class equivalent of the SVM-perf

method they are based upon), which means that the ternary

quantification task we tackle in this paper must be

accomplished by (a) generating independent individual

estimates of class prevalence for each of the three classes

of interest, by running three independent binary quantifiers,

and then (b) normalizing the resulting estimates so that

they sum up to 1. This is quite different, and somehow

suboptimal, from methods that (as evident by looking, say,

at Eqs. 10 and 11, and at Algorithm 1) are ‘‘natively multi-

class’’.

We also remark that the results reported in Table 5 by

and large confirm the results we had reported in the earlier

version of this paper Gao and Sebastiani (2015), where

only CC and SVM(KLD) had been tested. Like in Gao and

Sebastiani (2015), where we experimented only on 8 out of

the present 11 datasets, SVM(KLD) outperforms CC. Here,

SVM(KLD) outperforms CC according to five out of six

measures (NRAE being the exception), while it was

superior according to all six measures in Gao and Sebas-

tiani (2015).

Last but not least, we observe that CC, our classifica-

tion-specific baseline, is outperformed by all quantifica-

tion-specific learning methods (except SVM(NKLD) and

SVM(Q)), and that the difference in performance is very

substantial. In fact, the increase in quantification error

brought about by using CC instead of the best-performing

quantification-specific method (PCC) ranges between

þ88.2 % (when quantification error is measured by T
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NRAE) and þ257.1 % (when it is measured by KLD). This

confirms the basic claim of this paper, i.e., that when tweet

sentiment classification is carried out with the only goal of

estimating the prevalence of the classes of interest, we

should use a quantification-specific method rather than a

generic classifier.

5.3 Experiments with L2-regularized logistic

regression as a base learner

While the last three algorithms of Sect. 4.2 (SVM(KLD),

SVM(NKLD), SVM(Q)) are inherently based on SVMs,

the first five (CC, PCC, ACC, PACC, EMQ) can be used in

connection with any learner. (Technically, PCC, PACC,

EMQ require the learner to return a posterior probability,

but this can be obtained from any learner that, for an

unlabelled document, outputs a numerical confidence score

instead of just a binary decision; see the discussion of PCC

in Sect. 4.2).

As a result, we have performed further experiments in

which we test CC, PCC, ACC, PACC, EMQ also in con-

nection with a learner different from SVMs. As the learner,

we have chosen L2-regularized logistic regression (L2-

LR), as available in the LIBLINEAR package10 (Fan et al.

2008). The reasons why we have chosen L2-LR are that

(a) it has consistently delivered state-of-the-art

Table 7 Quantification

accuracy (last six columns)

obtained with a classification-

oriented learning algorithm

(CC) and four quantification-

oriented learning algorithms

(PCC, ACC, PACC, EMQ), all

with L2-LR as a base learner, on

four low-drift STC datasets; the

two bottom rows indicate the

average performance of each

learner across all the datasets

Dataset System Pos Neu Neg AE NAE RAE NRAE KLD NKLD

Sanders [Training] 0.148 0.691 0.161 – – – – – –

[Test] 0.148 0.688 0.164 – – – –

CC 0.077 0.788 0.135 0.0671 0.1182 0.2682 0.1042 0.0355 0.0178

PCC 0.131 0.710 0.159 0.0150 0.0264 0.0602 0.0234 0.0016 0.0008

ACC 0.163 0.637 0.200 0.0338 0.0595 0.1306 0.0507 0.0062 0.0031

PACC 0.167 0.642 0.191 0.0301 0.0530 0.1173 0.0456 0.0046 0.0023

EMQ 0.077 0.795 0.128 0.0715 0.1259 0.2849 0.1106 0.0383 0.0191

WB [Training] 0.341 0.389 0.270 – – – – – –

[Test] 0.337 0.392 0.271 – – – – – –

CC 0.354 0.381 0.264 0.0132 0.0272 0.0399 0.0257 0.0009 0.0004

PCC 0.341 0.403 0.255 0.0123 0.0254 0.0390 0.0252 0.0009 0.0004

ACC 0.339 0.422 0.239 0.0230 0.0475 0.0719 0.0464 0.0035 0.0018

PACC 0.338 0.413 0.249 0.0165 0.0340 0.0515 0.0332 0.0018 0.0009

EMQ 0.347 0.416 0.237 0.0244 0.0503 0.0773 0.0499 0.0036 0.0018

SemEval2016 [Training] 0.492 0.351 0.157 – – – – – –

[Test] 0.497 0.341 0.163 – – – – – –

CC 0.572 0.316 0.113 0.0500 0.0895 0.1771 0.0743 0.0158 0.0079

PCC 0.441 0.339 0.220 0.0379 0.0680 0.1553 0.0652 0.0115 0.0057

ACC 0.512 0.259 0.228 0.0542 0.0970 0.2246 0.0943 0.0223 0.0112

PACC 0.527 0.211 0.262 0.0864 0.1547 0.3504 0.1470 0.0561 0.0280

EMQ 0.594 0.293 0.113 0.0646 0.1157 0.2126 0.0892 0.0215 0.0107

GASP [Training] 0.082 0.496 0.422 – – – – – –

[Test] 0.086 0.507 0.407 – – – – – –

CC 0.058 0.526 0.416 0.0189 0.0311 0.1297 0.0310 0.0065 0.0032

PCC 0.072 0.508 0.421 0.0097 0.0160 0.0682 0.0163 0.0016 0.0008

ACC 0.109 0.499 0.392 0.0150 0.0246 0.1038 0.0248 0.0028 0.0014

PACC 0.073 0.514 0.413 0.0087 0.0142 0.0597 0.0142 0.0012 0.0006

EMQ 0.052 0.525 0.424 0.0231 0.0379 0.1589 0.0379 0.0102 0.0051

Average LD CC – – – 0.0373 0.0665 0.1537 0.0588 0.0147 0.0073

PCC – – – 0.0187 0.0339 0.0807 0.0325 0.0039 0.0019

ACC – – – 0.0315 0.0572 0.1327 0.0540 0.0087 0.0044

PACC – – – 0.0354 0.0640 0.1447 0.0600 0.0159 0.0080

EMQ – – – 0.0459 0.0824 0.1834 0.0719 0.0184 0.0092

The Pos, Neg, Neu columns indicate (true or predicted) prevalences. Boldface indicates the best system

10 http://www.csie.ntu.edu.tw/*cjlin/liblinear/.
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performance in several applications (Conroy and Sajda

2012; Zou et al. 2015), and is thus a strong contender, and

(b) logistic regression, unlike SVMs, natively outputs

posterior probabilities (see e.g., Murphy (2012, Sec-

tion 1.4.6)), which is helpful.

For the benefit of PCC, PACC, EMQ, which require the

base classifier to generate posterior probabilities, we use

the -b option of LIBLINEAR, which converts the scores

originally generated by L2-LR into posterior probabilities.

L2-LR has only one parameter, the C parameter which sets

the amount of regularization to be applied; we have opti-

mized this parameter in the same way as we did for SVMs’

C parameter (see Sect. 5.2). For the EMQ algorithm, we

stop the iteration in the way described in Sect. 5.2.

The overall results of these further experiments are

reported in Table 6, which reports for L2-LR the same data

that Table 5 had reported for SVMs. A comparison

between Table 5 and Table 6 shows that the L2-LR

experiments substantially confirm the conclusions we had

drawn from the SVM experiments. The PCC method is still

the best of the lot, with a very substantial margin over the

second best method, which is again ACC. Both the SVM

and the L2-LR experiments, and all of the six tested

evaluation measures, indicate that PCC [ ACC [
PACC [ CC (where ‘‘[ ’’ stands for ‘‘is a better method

than’’). The only discrepancy between the two batches of

experiments is given by the EMQ method, which was the

third best in the SVM experiments while it is the worst in

the L2-LR experiments; the observation made in Sect. 5.2

concerning the relationship between PCC and EMQ is thus

pertinent here too. As a side observation, we note that in

terms of absolute performance the SVM learner delivers

better performance than the L2-LR learner; the difference

is fairly small for all methods in {PCC, ACC, PACC, CC},

while it is very large for EMQ.

Tables 7, 8 and 9 report the results of the L2-LR-based

quantification methods on each individual dataset. If we

look at these results, the superiority of PCC is even more

marked than it was with the SVM-based learners: out of 66

combinations of 11 datasets � 6 evaluation measures, PCC

is the best performer in 48 (2 of them tied with CC), while

ACC is in 4, PACC is in 14, and CC is in 2 (tied with

Table 8 Same as Table 7, but

obtained on three medium-drift

datasets

Dataset System Pos Neu Neg AE NAE RAE NRAE KLD NKLD

OMD [Training] 0.266 0.271 0.463 – – – – – –

[Test] 0.280 0.283 0.437 – – – – – –

CC 0.262 0.223 0.516 0.0524 0.1092 0.1527 0.1001 0.0146 0.0073

PCC 0.276 0.290 0.434 0.0046 0.0095 0.0095 0.0099 0.0001 0.0001

ACC 0.267 0.319 0.414 0.0239 0.0499 0.0753 0.0494 0.0030 0.0015

PACC 0.293 0.285 0.422 0.0100 0.0208 0.0293 0.0192 0.0006 0.0003

EMQ 0.267 0.199 0.534 0.0648 0.1349 0.1886 0.1237 0.0256 0.0128

WA [Training] 0.281 0.414 0.305 – – – – – –

[Test] 0.272 0.446 0.282 – – – – – –

CC 0.308 0.380 0.312 0.0434 0.0894 0.1270 0.0816 0.0088 0.0044

PCC 0.298 0.395 0.307 0.0338 0.0697 0.0990 0.0636 0.0053 0.0027

ACC 0.318 0.384 0.298 0.0407 0.0839 0.1197 0.0769 0.0084 0.0042

PACC 0.306 0.404 0.291 0.0277 0.0570 0.0815 0.0523 0.0040 0.0020

EMQ 0.305 0.387 0.309 0.0391 0.0806 0.1145 0.0736 0.0072 0.0036

SemEval2013 [Training] 0.371 0.470 0.159 – – – – – –

[Test] 0.412 0.430 0.158 – – – – – –

CC 0.319 0.579 0.102 0.0996 0.1774 0.3095 0.1265 0.0468 0.0234

PCC 0.371 0.420 0.209 0.0344 0.0613 0.1506 0.0616 0.0093 0.0047

ACC 0.335 0.551 0.114 0.0806 0.1435 0.2479 0.1013 0.0300 0.0150

PACC 0.344 0.552 0.104 0.0812 0.1446 0.2626 0.1073 0.0327 0.0164

EMQ 0.318 0.609 0.074 0.1191 0.2121 0.3923 0.1603 0.0780 0.0390

Average MD CC – – – 0.0651 0.1253 0.1964 0.1027 0.0234 0.0117

PCC – – – 0.0243 0.0469 0.0864 0.0450 0.0049 0.0025

ACC – – – 0.0484 0.0924 0.1476 0.0759 0.0138 0.0069

PACC – – – 0.0396 0.0741 0.1244 0.0596 0.0124 0.0062

EMQ – – – 0.0743 0.1425 0.2318 0.1192 0.0369 0.0184
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PCC). If we look at the average results on low-drift, mid-

drift and high-drift datasets, PCC is always the best

performer.

5.4 Statistical significance tests

In order to check whether the differences in performance

among the eight quantification methods we test are statis-

tically significant, we have performed the pairwise two-

tailed Wilcoxon signed-ranks test (Demšar 2006; Wil-

coxon 1945) on the 11 datasets, based on the KLD results.

As a non-parametric alternative to the paired t test, the

Wilcoxon test ranks the absolute differences in the per-

formance measure (KLD, in our case) of two algorithms for

each dataset, and compares the ranks for the positive and

the negative differences (Demšar 2006). When the com-

puted p value is lower than the significance level a ¼ 0:05,

we reject the null hypothesis and claim that the difference

of the two algorithms is statistically significant.

The results of ourWilcoxon test are displayed in Table 10.

It can be observed that the reported differences between the

algorithms essentially confirm, from a statistical point of

view, the results in Tables 5 and 6. The superiority of PCC

over most other algorithms is statistically significant, except

for ACC and PACC. ACC is obtained fromCC by correcting

for CC’s bias, i.e., for its tendency to overpredict some of the

classes and underpredict the others. Such correction is very

effective for CC, whose performance is rather low; this can

be seen fromTable 10,whereACC significantly outperforms

CC. However, from the same table we can see that PACC is

Table 9 Same as Table 7, but

obtained on four high-drift

datasets

Dataset System Pos Neu Neg AE NAE RAE NRAE KLD NKLD

SST [Training] 0.288 0.452 0.260 – – – – – –

[Test] 0.312 0.481 0.207 – – – – – –

CC 0.263 0.490 0.247 0.0330 0.0624 0.1239 0.0638 0.0079 0.0040

PCC 0.270 0.488 0.242 0.0282 0.0534 0.1068 0.0550 0.0059 0.0030

ACC 0.315 0.407 0.279 0.0492 0.0931 0.1689 0.0869 0.0164 0.0082

PACC 0.201 0.607 0.192 0.0841 0.1591 0.2302 0.1185 0.0410 0.0205

EMQ 0.257 0.512 0.231 0.0369 0.0698 0.1190 0.0613 0.0078 0.0039

SemEval2015 [Training] 0.371 0.470 0.159 – – – – – –

[Test] 0.434 0.413 0.153 – – – – – –

CC 0.289 0.578 0.133 0.1101 0.1950 0.2879 0.1145 0.0593 0.0297

PCC 0.365 0.418 0.217 0.0460 0.0815 0.1973 0.0785 0.0168 0.0084

ACC 0.275 0.539 0.186 0.1064 0.1885 0.2971 0.1182 0.0587 0.0293

PACC 0.282 0.540 0.177 0.1013 0.1793 0.2729 0.1085 0.0532 0.0266

EMQ 0.261 0.593 0.145 0.1204 0.2131 0.2949 0.1173 0.0787 0.0393

HCR [Training] 0.243 0.211 0.546 – – – – – –

[Test] 0.193 0.167 0.640 – – – – – –

CC 0.132 0.149 0.719 0.0525 0.0946 0.1817 0.0780 0.0179 0.0090

PCC 0.196 0.173 0.631 0.0055 0.0100 0.0202 0.0087 0.0002 0.0001

ACC 0.183 0.203 0.614 0.0240 0.0433 0.1026 0.0440 0.0042 0.0021

PACC 0.177 0.216 0.606 0.0329 0.0592 0.1436 0.0616 0.0077 0.0039

EMQ 0.088 0.138 0.774 0.0895 0.1612 0.3093 0.1328 0.0622 0.0311

SemEval2014 [Training] 0.371 0.470 0.159 – – – – – –

[Test] 0.530 0.361 0.109 – – – – – –

CC 0.406 0.517 0.077 0.1043 0.1755 0.3212 0.0949 0.0497 0.0249

PCC 0.380 0.420 0.201 0.1001 0.1685 0.4277 0.1263 0.0557 0.0278

ACC 0.484 0.448 0.068 0.0581 0.0978 0.2360 0.0697 0.0219 0.0110

PACC 0.505 0.441 0.054 0.0533 0.0898 0.2573 0.0760 0.0298 0.0149

EMQ 0.476 0.482 0.042 0.0807 0.1358 0.3517 0.1039 0.0573 0.0287

Average HD CC – – – 0.0750 0.1319 0.2287 0.0878 0.0337 0.0169

PCC – – – 0.0450 0.0783 0.1880 0.0671 0.0197 0.0098

ACC – – – 0.0594 0.1057 0.2012 0.0797 0.0253 0.0127

PACC – – – 0.0679 0.1219 0.2260 0.0912 0.0329 0.0165

EMQ – – – 0.0819 0.1450 0.2687 0.1038 0.0515 0.0257
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not significantly better than PCC. Similarly toACC,PACC is

obtained from PCC by correcting for PCC’s bias, and the

results in Table 10 indicate that PACC does not benefit from

the very same correction for bias that ACC benefits from.

Anyway, the most important takeaway message to be

obtained from Table 10 is that CC, the naive classification-

based method that ‘‘anybody would use’’ when trying to

estimate class prevalences, is inferior, in a statistically

significant sense, to a method (PCC) explicitly designed for

quantification. PCC estimates prevalences directly, without

using the classification of individual items as an interme-

diate step (only posterior probabilities are estimated by the

classifiers, and no thresholding is applied on these proba-

bilities to obtain class assignments). This is yet another

confirmation of Vapnik’s principle (mentioned in Sect. 1),

and a confirmation of the basic thesis of this paper, i.e., that

when prevalence estimation is the real goal of a tweet

sentiment analysis task, algorithms optimized for preva-

lence estimation, rather than for classification, should be

employed.

6 Conclusion

In this paper, we have argued that the real goal of most

research efforts dealing with the sentiment conveyed by

tweets, is not classification but quantification (i.e., preva-

lence estimation). As a result, those who pursue this goal

by using the learning algorithms and evaluation measures

that are standard in the classification arena may obtain

inaccurate prevalence estimates. We have experimentally

shown, on a multiplicity of tweet sentiment classification

(TSC) datasets, that more accurate prevalence estimates

may be obtained by considering quantification as a task in

its own right, i.e., by using quantification-specific learning

algorithms which directly attempt to solve the prevalence

estimation problem, rather than viewing quantification as a

byproduct of classification. Adopting a quantification-

specific approach in gauging tweet sentiment may benefit

many applications, especially in fields (such as political

science, social science, and market research) that are usu-

ally less interested in finding the needle in the haystack

than in characterizing the haystack itself.

Finally, we want to note that, while this paper has

addressed sentiment classification, the same arguments

we have made apply to many studies where tweets are

classified along dimensions other than sentiment. For

instance, aggregate (rather than individual) results from

tweet classification are the real goal in Asur and

Huberman (2010), which analyses Twitter data in order

to predict box office revenues for movies; in Olteanu

et al. (2015), whose authors try to determine the per-

centage of tweets that are about infrastructure damage

vs. those which are about donations, in order to do rapid

damage assessment during humanitarian crises; in

Takahashi et al. (2011), where hay fever maps are gen-

erated from geo-located tweets of fever-stricken people;

in Herfort et al. (2014), where the authors generate a

heat map of a natural disaster from geo-located tweets

that report on it; and in many others.

The present paper thus urges researchers involved in

tweet mining to take the distinction between classification

and prevalence estimation at heart, and optimize their

systems accordingly.
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Table 10 Results of Wilcoxon

tests for our 8 quantification

methods, as deriving from the

KLD results across the 11

datasets

CC PCC ACC PACC EMQ SVM(KLD) SVM(NKLD) SVM(Q)

CC \\ \ � �� \[ � � [� [�
PCC [ [ �� �� [ [ [� [� [�
ACC [ � �� �� �� [� [� [�
PACC �� �� �� �� � � [� [�
EMQ [\ \\ �� �� � � [� [�
SVM(KLD) � � \� \� � � � � [� [�
SVM(NKLD) \� \� \� \� \� \� � �
SVM(Q) \� \� \� \� \� \� � �

Symbol ‘‘[ ’’ indicates that the method on the row is better, in a statistically significant way, than the

method on the column; symbol ‘‘\’’ means the opposite; symbol ‘‘�’’ means that there is no statistically

significant difference among the two; symbol ‘‘�’’ indicates that the comparison was not performed

(because one of the two methods, or both, cannot be L2-LR-based). In each cell, the leftmost symbol

indicates a comparison between the two SVM-based instantiations of the method, while the rightmost

symbol indicates a comparison between the L2-LR-based instantiations
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