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System specification 

Core approach 

We obtained the Training, Development and Test data sets provided by the organizers, Pre-

processed the data, identified and added features which we thought to be relevant in 

identifying the sentiment of the tweet. We then built up a model using SMO on Training 

Data, improved the accuracy by checking the model on development data and modifying the 

features in an iterative manner. Finally we run the model on test data set to obtain the 

sentiment classification of its tweets. 

Supervised or Unsupervised 

As the class label was associated with training set so we are following supervised machine 

learning approach using SMO classifier in which we first built a mod using given training set 

and then applied it on the given development and test set. 

Critical tools used 

1. ARK Tagger. 

2. Weka 3.6. 

3. Eclipse IDE for Java Programming. 

4. Notepad++ as text editor. 

 

Critical features used 
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Features used for sentiment analysis are listed below: 

S.N. Feature Name Description Data Type 
1 sentiword_positive Sum of positive polarity of all words of a 

tweet. 

Numeric 

2 sentiword_negative Sum of negative polarity of all words of a 

tweet. 

Numeric 

3 sentiword_neutral Polarity measure for neutral words. Numeric 

4 stop_words Number of Stop words present in a Tweet. Numeric 

5 all_cap_words Number of words having all character in upper 

case for a tweet. 

Numeric 

6 no_of_hash Number of Hash tag present in a tweet. Numeric 

7 tweet_length Number of words in a tweet having more than 

two characters. 

Numeric 

8 init_cap Number of words starting with a Upper Case 

letter. 

Numeric 

9 percent_cap Percentage of capitalized characters in a tweet. Numeric 

10 psmiley Number of positive smiley present in a tweet. Numeric 

11 nsmiley Number of negative smiley present in a tweet. Numeric 

  12 pwords Number of positive words present in a tweet. Numeric 

13 nwords Number of negative words present in a tweet. Numeric 

14 neutralwords Number of negative words present in a tweet. Numeric 

15 adjective_count Number of adjectives present in a tweet. Numeric 

16 not_exists Any form of ‘not’ is present or not. Boolean 

17 repeating_char Word(s) having consecutive repeated atleast 3 

characters is present or not.    

Boolean 

 

Significant data pre/post-processing 

The following pre-processing was done 

1. Tweets were extracted based on markers given (Task A only). 

2. Extracted parts were tagged using ARK Tagger. 

3. Parts of Tweets which were not related with emotions were filtered out. 

4. Feature String was added to every row of tweet. 

5. File was converted to .arff format (To be used with Weka). 

 

The following post-processing was done 

1. Class predictions generated by Weka were inserted in test file to replace the unknown 

portion. 

2. File was checked to be in correct format using the utility scorer given by organizers. 
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Other data used (outside of the provided) 

1. Smiley list was obtained from Wikipedia. 

2. Stop word list was obtained from the internet. 
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