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Abstract

We report results obtained by the UoW
method in SemEval-2014’s Task 10 – Mul-
tilingual Semantic Textual Similarity. We
propose to model Semantic Textual Simi-
larity in the context of Multi-task Learning
in order to deal with inherent challenges of
the task such as unbalanced performance
across domains and the lack of training
data for some domains (i.e. unknown
domains). We show that the Multi-task
Learning approach outperforms previous
work on the 2012 dataset, achieves a ro-
bust performance on the 2013 dataset and
competitive results on the 2014 dataset.
We highlight the importance of the chal-
lenge of unknown domains, as it affects
overall performance substantially.

1 Introduction

The task of Semantic Textual Similarity (STS)
(Agirre et al., 2012) is aimed at measuring the
degree of semantic equivalence between a pair of
texts. Natural Language Processing (NLP) ap-
plications such as Question Answering (Lin and
Pantel, 2001), Text Summarisation (Lin and Hovy,
2003) and Information Retrieval (Park et al., 2005)
rely heavily on the ability to measure semantic
similarity between pairs of texts. The STS eval-
uation campaign provides datasets that consist of
pairs of sentences from different NLP domains
such as paraphrasing, video paraphrasing, and ma-
chine translation (MT) evaluation. The participat-
ing systems are required to predict a graded simi-
larity score from 0 to 5, where a score of 0 means
that the two sentences are on different topics and
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a score of 5 means that the two sentences have ex-
actly the same meaning.

Methods for STS are commonly based on com-
puting various types of similarity metrics between
the pair of sentences, where the similarity scores
are used as features to train regression algorithms.
Bär et al. (2012) use similarity metrics of vary-
ing complexity. The range of features goes from
simple string similarity metrics to complex vector
space models. The method yielded the best av-
erage results based on the official evaluation met-
rics, despite not having achieved the best results
in all individual domains. Šarić et al. (2012) use a
similar set up, extracting features from similarity
metrics, where these features are based on word-
overlap and syntax similarity. The method was
among the best for domains related to paraphras-
ing. It also achieved a high correlation between
the training and test data. In contrast, for the ma-
chine translation data the performance in the test
set was lower than the one over the training data.
A possible reason for the poor results on this do-
main is the difference in length between the train-
ing and test sentences, as in the test data the pairs
tend to be short and share similar words. Šarić et
al. (2012) claim that these differences show that
the MT training data is not representative of the
test set given their choice of features.

Most of the participating systems in the STS
challenges achieve good results on certain do-
mains (i.e. STS datasets), but poor results on oth-
ers. Even the most robust methods still show a big
gap in performances for different datasets. In the
second evaluation campaign of STS a new chal-
lenge was proposed: domains for which no train-
ing sets are provided, but only test sets. Heilman
and Madnani (2013) propose to incorporate do-
main adaptation techniques (Daumé et al., 2010)
for STS to generalise models to new domains.
They add new features into the model, where the
feature set contains domain specific features plus
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general task features. The machine learning al-
gorithm infers the extra weights of each specific
domain and of the general domain. When an in-
stance of a specific domain is to be predicted, only
the copy of the features of that domain will be ac-
tive; if the domain is unknown, the general fea-
tures will be active. Severyn et al. (2013) pro-
pose to use meta-classification to cope with do-
main adaptation. They merge each pair into a sin-
gle text and extract meta-features such as bag-of-
words and syntactic similarity scores. The meta-
classification model predicts, for each instance, its
most likely domain based on these features.

A possible solution to alleviate unbalanced per-
formances on different domains is to model STS
in the context of Multi-task Learning (MTL). The
motivation behind MTL is that by learning multi-
ple related tasks simultaneously the model perfor-
mance may improve compared to the case where
the tasks are learnt separately. MTL is based on
the assumption that related tasks can be clustered
and inter-task correlations between tasks within
the same cluster can be transferred.

We propose to model STS using MTL based
on a state-of-the-art STS feature set (Šarić et al.,
2012). As algorithm we use a non-parametric
Bayesian approach, namely Gaussian Processes
(GP) (Rasmussen, 2006). We show that the MTL
model outperforms previous work on the 2012
datasets and leads to robust performance on the
2013 datasets. On the STS 2014 challenge, our
method shows competitive results.

2 Experimental Setting

We apply MTL to cope with the challenge of un-
balanced performances across domains and un-
known domains present in the STS datasets.

2.1 TakeLab Features
We use the features from one the top perform-
ing system in STS 2012: the TakeLab1 system,
which is publicly available. It extracts the follow-
ing types of features:

N-gram overlap is the harmonic mean of the de-
gree of matching between the first and second
texts, and vice-versa. The overlap is com-
puted for unigrams, bigrams, and trigrams.

WordNet-augmented word overlap is the par-
tial WordNet path length similarity score as-

1http://takelab.fer.hr/sts/

signed to words that are not common to both
texts.

Vector space sentence similarity is the repre-
sentation of each text as a distributional vec-
tor by summing the distributional (i.e., LSA)
vectors of each word in the text and taking the
cosine distance between these texts vectors.

Shallow NE similarity is the matching between
Named Entities (NE) that indicates whether
they were found in both texts.

Numbers overlap is an heuristic that penalises
differences between numbers in texts.

Altogether, these features make up a vector of 21
similarity scores.

2.2 Multi-task Gaussian Processes
Gaussian Processes (Rasmussen, 2006) is a
Bayesian non-parametric machine learning frame-
work based on kernels for regression and classifi-
cation. In GP regression, for the inputs x we want
to learn a function f that is inferred from a GP
prior:

f(x) ∼ GP (m(x), k(x, x′)), (1)

where m(x) defines a 0 mean and k(x, x′) defines
the covariance or kernel functions. In the single
output case, the random variables are associated
to a process f evaluated at different values of the
input x. In the multiple output case, the random
variables are associated to different processes and
evaluated at different values of x.

We are interested in the intrinsic coregionaliza-
tion model for GP. A coregionalization model is
a heterotopic MTL model in which each output is
associated with a different set of inputs. In our
case the different set of inputs are the STS do-
mains (i.e. datasets). The intrinsic coregionaliza-
tion model (i.e. MTL-GP) is based on a separable
multi-task kernel (Álvarez et al., 2012) of the form

K(X, X) = B ⊗ k(X, X), (2)

where k(X, X) is a standard kernel over the in-
put points and B is a positive semi-definite ma-
trix encoding task covariances, called coregion-
alization matrix. B is built from other matrices
B = WW> + diag(k), where W is a matrix that
determines the correlations between the different
outputs and k is a matrix which allows the outputs
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(i.e. tasks) to behave independently. The repre-
sentation of data points is augmented with task ids
and given the id of a pair of data points the co-
variance from the standard kernel between them
is multiplied by a corresponding covariance from
B, which modifies the data points’ covariance de-
pending on whether they belong to the same task
or different tasks.

The coregionalization matrix B allows us to
control the amount of inter and intra task transfer
of learning among tasks. Cohn and Specia (2013)
propose different types of B matrices to model
the problem of predicting the quality of machine
translations. They developed B matrices that rep-
resent an explicit intra-task transfer to be a part of
the parameterised kernel function. We use a de-
fault B where the weights of the matrix are learnt
along with the hyper-parameters by the GP tool.

For training our method we use the GPy toolkit2

with a combination of RBF and coregionalization
kernels. The parameters used to build the core-
gionalization matrix are the number of outputs to
coregionalize and the rank of W . For example,
in the 2012 training set, the number of outputs
to coregionalize is 3, given that we have three
tasks/domains. The B matrix and the RBF kernel
hyper-parameters are jointly optimised. Each in-
stance of the training data is then augmented with
the id of their corresponding task. During test-
ing a new instance has to be matched to a specific
task/domain id from the training data. In the case
of an unknown test domain, we match it to a train-
ing domain which is similar, given the description
of the test dataset.

For the STS 2014 dataset, given the large num-
ber of training instances, we train a sparse GP
model within GPy. The main limitation of the GP
model is the that memory demands grow O(n2),
and the computational demands grow O(n3), with
n equals the number of training instances. Sparse
methods (e.g. (Titsias, 2009)) try to overcome this
limitation by constructing an approximation of the
full model on a smaller set of m support or induc-
ing instances that allow the reduction of compu-
tational demands to O(nm2). For the sparse GP
we use the same combination of kernels as the full
model, where we chose empirically the number of
inducing instances m and the GP tool randomly
selects the instances from the training data.

2https://github.com/SheffieldML/GPy

3 Results and Discussion

In what follows we show a comparison with previ-
ous work on the STS 2012 and 2013 datasets, and
the official results for English and Spanish STS
2014 datasets.

3.1 STS 2012 and STS 2013

For training we use the STS 2012 training datasets
and we compare the results on the STS 2012 with
publicly available systems and with the official
Baseline, which is based on the cosine metric com-
puted over word overlaps. The official evaluation
metric is Pearson’s correlation. We match the un-
known domain OnWN to MSRpar given that the
domain of paraphrasing is that of news from the
web, which potentially contains a broad enough
vocabulary to cover OnWN.

Table 3.1 shows a comparison of the MTL-GP
with previous work on the STS 2012 data, where
our method outperforms them for most of the do-
mains. Our method improves the results of Take-
Lab with the same feature set. In other words,
the transfer learning improves over (Šarić et al.,
2012), which is trained with a separate Support
Vector Regression model for each domain. We
note that we can only compare our method against
the simpler version of TakeLab that is available.
A different version using syntactic features was
also proposed, where most results do not show a
significant variation, except for an improvement
of r=0.4683 in the SMTnews dataset. For the
complete alternative results we refer the reader to
(Šarić et al., 2012).

On the STS 2013 dataset, we compare our
method with work based on domain adaptation
and the official baseline. We use the 2012 data for
training as no additional training data is provided
in 2013. Table 3.1 shows all the possible match-
ing combinations between the STS 2013 test sets
and STS 2012 training sets. The best results are
given by matching the STS 2013 test sets with the
MSRvid domain, where all 2013 sets achieve their
best results.

In Table 3.1, we show the comparison with
previous work on the 2013 datasets, where we
use the best matching result from Table 3.1
(MSRvid). Our method shows very competitive
results but only with the correct matching of do-
mains, whereas the worst performed matching
(SMTeuroparl, Table 3.1) shows results that are
closer to the official Baseline. In previous work
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Method MSRpar MSRvid SMTeuroparl SMTnews OnWN
Šarić et al. (2012) 0.7343 0.8803 0.4771 0.3989 0.6797
Bär et al. (2012) 0.68 0.8739 0.5280 0.4937 0.6641

MTL-GP 0.7324 0.8877 0.5615 0.6053 0.7256
Baseline 0.4334 0.2996 0.4542 0.3908 0.5864

Table 1: Comparison with previous work on the STS 2012 test datasets.

(Heilman and Madnani, 2013), domain adaptation
is performed with the addition of extra features
and the subsequent extra parameters to the model,
where in the MTL-GP the transfer learning is done
with the coregionalization matrix and does not de-
pend on large amounts of data.

3.2 English STS 2014

The training dataset consists of the combination of
each English training and test STS datasets from
2012 and 2013, which results in 7 domains. For
testing, in our first run we matched similar do-
mains with each other and the unknown domain
with MSRpar. For our second run, we matched
the unknown domains with a similar one. The
domain matching (test/training) was done as fol-
lows: deft-forum/MSRpar, deft-news/SMTnews,
tweet-news/SMTnews and images/MSRvid. For
our third run, the difference in matching is for deft-
news/headlines and tweet-news/headlines, where
the other domains remain with the same match-
ing. Table 3.2 shows the official STS 2014 results
where our best method (i.e. run3) achieves rank
10.

In Table 3.2, we show the comparison of the
MTL-GP and the sparse MTL-GP with the best
2014 system (DLSCU run2). For both MTL meth-
ods we match the 2014 domains with the train-
ing domain headlines. For the sparse MTL-GP,
we chose empirically a number m of 500 ran-
domly induced points. For reference, the corre-
lation of sparse MTL-GP with 50 points on deft-
forum is r=0.4691 obtained in 0.23 hours, with
100 points, r=0.4895, with 500 points, r=0.4912,
and with 1000 points, r=0.4911. The sparse MTL-

Test
Train MSRvid MSRpar SMTeuroparl

Headlines 0.6666 0.6595 0.5693

OnWN 0.6516 0.4635 0.4113

FNWN 0.4062 0.3217 0.2344

Table 2: Matching of new 2013 domains with
2012 training data.

GP with 500 points runs in 1.38 hours, compared
to 2.39 hours for the full MTL-GP3. Addition-
ally, the sparse version achieves similar results to
the full model and very competitive performance
compared to the best STS 2014 system. However,
the result for OnWN is substantially lower than the
best system. This result can be highly improved
(r=0.7990) if the test set is matched with the cor-
respondent training domain.

3.3 Spanish STS 2014

For the Spanish STS subtask we use both sim-
ple and state-of-the-art (SoA) features to train the
MTL-GP. The simple features are similarity scores
from string metrics such as Levenshtein, Gotoh,
Jaro, etc.4 The SoA similarity features come again
from TakeLab. The training dataset consists of the
combination of each English STS domains from
2012 and 2013 and the Spanish trial dataset with
task-id matching each instance to a given domain.
We represent the feature vectors with sparse fea-
tures for the English and Spanish training datasets,
where in English the pairs have simple and SoA
features, and for Spanish, only the simple features.
In other words, the feature vectors have the same
number of features (34): 13 simple features and 21
SoA features. However, for Spanish the SoA fea-
tures are set to 0 in training and testing. The moti-
vation to use SoA and simple features in English is
that the extra information will improve the transfer
learning on the English domains and discriminate
between the English domains and the Spanish do-
main, which only contains simple features. For
testing we only extracted the simple features; the
SoA features were set to 0. For the coregionaliza-
tion matrix we set the number of domains to be the
English STS domains from 2012 and 2013, plus
the Spanish trial, where the Spanish is treated as an
additional domain, which results in 8 domains. In
the first run of testing, we matched the test datasets
to the Spanish domain, and in the second run we
matched the datasets to the English MSRpar do-

3Intel Xeon(R) at 2.67GHz with 24 cores
4https://github.com/Simmetrics/simmetrics
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Method Headlines OnWN FNWN
Heilman and Madnani (2013) 0.7601 0.4631 0.3516

Severyn et al. (2013) 0.7465 0.5572 0.3875
MTL-GP 0.6666 0.6516 0.4062
Baseline 0.5399 0.2828 0.2146

Table 3: Comparison between best matching MTL-GP (MSRvid) and previous work on the STS 2013
test datasets.

Run deft-forum deft-news headlines images OnWN tweet-news Weighted mean rank
UoW run1 0.3419 0.7512 0.7535 0.7763 0.7990 0.7368 0.7143 11
UoW run2 0.3419 0.5875 0.7535 0.7877 0.7990 0.6281 0.6817 17
UoW run3 0.3419 0.7634 0.7535 0.7877 0.7990 0.7529 0.7207 10

Table 4: Official English STS 2014 results.

main. Table 3.3 shows the official results for the
Spanish subtask, where our method achieves com-
petitive performance, placed 7 in the systems rank-
ing. We only show the results for the first run as
both runs achieved the same performance.

Run Wikipedia News Weighted
mean

rank

UoW 0.7483 0.8001 0.7792 7

Table 6: Official Spanish STS 2014 results.

Table 3.3 shows the comparison of the best
Spanish STS 2014 system (UMCC DLSI run2)
against two different sparse MTL-GP matched
with the Spanish trial with 500 inducing points.
Sparse MTL-GP run1 uses the sparse features de-
scribed above, while run2 uses a modification of
the feature set consisting in specific features for
each type of domain. For the English domains
the simple features are set to 0, and for Spanish
the SoA are still set to 0. The difference between
sparse MTL-GP models is very small, where the
use of all the features on the English domains im-
proves the results. However, the performance of
both models is still substantially lower than that of
the best system.

Run Wikipedia News
UMCC DLSI run2 0.7802 0.8254

Sparse MTL-GP run1 0.7468 0.7959
Sparse MTL-GP run2 0.7380 0.7878

Table 7: Comparison of best system against sparse
MTL-GP STS 2014 results.

4 Conclusions

We propose the use of MTL for STS. We show
that MTL improves the results of one of the best
STS systems, TakeLab. However, the match-

ing of an unknown domain during testing proved
a key challenge that affects performance signifi-
cantly. Given the results of STS 2013 and 2014,
our method tends to achieve best results when
known/unknown domains are matched to the same
training domains (i.e. MSRpar for 2013 and head-
lines for 2014). The sparse MTL-GP shows sim-
ilar performance to the full GP model, but takes
half the time to be trained. In the Spanish subtask,
we train our method with English datasets and the
Spanish trial data as an additional domain. For
this subtask our method also shows competitive re-
sults. Future work involves the automatic match-
ing of unknown domains at test time via meta-
classification (Severyn et al., 2013).
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Mauricio A. Álvarez, Lorenzo Rosasco, and Neil D.
Lawrence. 2012. Kernels for vector-valued func-
tions: A review. Found. Trends Mach. Learn.,
4(3):195–266, March.

Daniel Bär, Chris Biemann, Iryna Gurevych, and
Torsten Zesch. 2012. Ukp: Computing seman-
tic textual similarity by combining multiple content
similarity measures. In Proceedings of the First

783



Run deft-forum deft-news headlines images OnWN tweet-news
DLSCU run2 0.4828 0.7657 0.7646 0.8214 0.8589 0.7639

Best matching MTL-GP 0.4903 0.7633 0.7535 0.8063 0.7222 0.7528
Sparse MTL-GP 0.4910 0.7642 0.7540 0.8057 0.7276 0.7539

Table 5: Comparison between best matching MTL-GP (headlines), Sparse MTL-GP and best STS 2014
system.

Joint Conference on Lexical and Computational Se-
mantics, SemEval ’12, pages 435–440, Stroudsburg,
PA, USA.

Trevor Cohn and Lucia Specia. 2013. Modelling an-
notator bias with multi-task gaussian processes: An
application to machine translation quality estima-
tion. In 51st Annual Meeting of the Association for
Computational Linguistics, ACL-2013, pages 32–
42, Sofia, Bulgaria.
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