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Abstract

We describe the grammar induction sys-
tem for Spoken Dialogue Systems (SDS)
submitted to SemEval’14: Task 2. A sta-
tistical model is trained with a rich fea-
ture set and used for the selection of can-
didate rule fragments. Posterior probabil-
ities produced by the fragment selection
model are fused with estimates of phrase-
level similarity based on lexical and con-
textual information. Domain and language
portability are among the advantages of
the proposed system that was experimen-
tally validated for three thematically dif-
ferent domains in two languages.

1 Introduction

A critical task for Spoken Dialogue Systems
(SDS) is the understanding of the transcribed user
input, that utilizes an underlying domain grammar.
An obstacle to the rapid deployment of SDS to
new domains and languages is the time-consuming
development of grammars that require human ex-
pertise. Machine-assisted grammar induction has
been an open research area for decades (K. Lari
and S. Young, 1990; S. F. Chen, 1995) aiming
to lower this barrier. Induction algorithms can
be broadly distinguished into resource-based, e.g.,
(A. Ranta, 2004), and data-driven, e.g., (H. Meng
and K.-C. Siu, 2002). The main drawback of
the resource-based paradigm is the requirement of
pre-existing knowledge bases. This is addressed
by the data-driven paradigm that relies (mostly)
on plain corpora. SDS grammars are built by uti-
lizing low- and high-level rules. Low-level rules
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are similar to gazetteers consisting of terminal en-
tries, e.g., list of city names. High-level rules can
be lexicalized as textual fragments (or chunks),
which are semantically defined on top of low-
level rules, e.g., ‘depart from <City>’.
The data-driven induction of low-level rules is a
well-researched area enabled by various technolo-
gies including web harvesting for corpora creation
(Klasinas et al., 2013), term extraction (K. Frantzi
and S. Ananiadou, 1997), word-level similarity
computation (Pargellis et al., 2004) and cluster-
ing (E. Iosif and A. Potamianos, 2007). High-level
rule induction is a less researched area that poses
two main challenges: 1) the extraction and selec-
tion of salient candidate fragments from a corpus
that convey semantics relevant to the domain of in-
terests and 2) the organization of such fragments
(e.g., via clustering) according to their semantic
similarity. Despite the recent interest on phrase (J.
Mitchell and M. Lapata, 2010) and sentence simi-
larity, each respective problem remains open.

Next, our submission1 for the Se-
mEval’14: Task2 is briefly described, which
constitutes a data-driven approach for inducing
high-level SDS grammar rules. At the system’s
core lies a statistical model for the selection of
textual fragments based on a rich set of features.
This set includes various lexical features, aug-
mented with statistics from n-gram language
models, as well as with heuristic features. The
candidate selection model posterior is fused
with a phrase-level semantic similarity metric.
Two different approaches are used for similarity
computation relying on the overlap of character
bigrams or context-based similarity according
to the distributional hypothesis of meaning.
The domain and language portability of the
proposed system is demonstrated by its successful
application across three different domains and

1Please note that the last three authors of this submission
are among the organizers of this task.
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two languages. All the four subtasks defined by
the organizers were completed with very good
performance that exceeds the baseline.

2 System Description

The basic functionality of the proposed system
is the mapping (assignment) of unknown textual
fragments into known high-level grammar rules.
Let E be the set of unknown fragments, while the
set of known rules is denoted byR. Each unknown
fragment f ∈E is allowed to be mapped to a sin-
gle high-level rule rs ∈R, where 1≤ s≤ m and
m is the total number of rules in the grammar.

Figure 1: Overview of system architecture.
The system consists of three major components as
shown at the system architecture diagram in Fig.
1, specifically: 1) candidate selection: a set of
classifiers is built, one for each rs to select whether
f ∈ E is a candidate member of the specific rule2,
2) similarity computation between f and rs, and
3) mapping f to a high-level rule rs (denoted as
f 7→ rs) according to the following model:

argmax
s
{p(rs|f)wS(f, rs)} : f 7→ rs (1)

where p(rs|f) stands for the probability of f
belonging to rule rs and it is estimated via the
respective classifier. The similarity between
f and rs is denoted by S(f |rs), while w is
a fixed weight taking values in the interval
[0 ∞). The fusion weight w controls the rela-
tive importance of the candidate selection and
semantic similarity modules, e.g., for w = 0
only the similarity metric S(f, rs) is used in the
decision. For example, consider the fragment f
‘leaving <City>’. Also, assume two high-
level rules, namely, <ArrCity>={‘arrive

2The requirement for building a classifier for each gram-
mar rule is realistic for the case of SDS, especially for the typ-
ical iterative human-in-the-loop grammar development sce-
nario.

at <City>’,...} and <DepCity>=
{‘depart <City>’,...}. According to (1)
f is mapped to the <DepCity> rule.

2.1 Candidate Selection
In this section, the features used for building the
candidate selection module for each rs ∈ R are
briefly described. Given a pair (f ,rs) a two-class
statistical classification model that corresponds to
rs is used for estimating p(rs|f) in (1).
Definitions. A high-level rule rs can be con-
sidered as a set of fragments, e.g.,‘depart
<City>’, ‘leaving <City>’. For each
fragment there are two types of constituents,
namely, lexical (e.g., ‘depart’,‘leaving’)
and low-level rules (e.g., ‘<City>’). The fol-
lowing features are extracted for rs considering its
respective fragments, as well as for f .
Shallow features. 1) the number of constituents
(i.e., tokens), 2) the count of lexical constituents
to the number of tokens, 3) the count of low-level
rules to the number of tokens, 4) the count of lex-
ical constituents that follow the right-most low-
level rule of the fragment, and 5) the count of low-
level rules that appear twice in a fragment.
Perplexity-based features. A fragment f̃ can
be represented as a sequence of tokens as
w1 w2 ... wz . The perplexity of f̃ is defined as
PP (f̃)=2H(f̃), where H(f̃)= 1

z log(p(f̃)). p(f̃)
stands for the probability of f̃ estimated using an
n-gram language model. Two PP values were
used as features computed for n=2, 3.
Features of lexical similarity. Four scores of lex-
ical similarity computed between f and rs were
used as features. Let Ns denote the set of frag-
ments that are included in the training set of each
rule rs. The following metrics were employed
for computing the similarity between the unknown
fragment f and a fragment fs ∈ Ns: 1) the nor-
malized longest common subsequence (Stoilos et
al., 2005) denoted as SC , 2) the normalized over-
lap in character bigrams that is denoted as SB and
it is defined in (2), 3) a proposed variation of the
Levenshtein distance, SL, defined as SL(f, fs) =
l1−L(f,fs)

l1+d , where l1 and l2 are the lengths (in char-
acters) of the lengthiest and the shortest fragment
between f and fs, respectively, while d= l1 − l2.
L(.) stands for the Levenshtein distance (V. I. Lev-
enshtein, 1966; R. A. Wagner and M. J. Fischer,
1974). 4) if f and fs differ by one token exactly
SL is applied, otherwise their similarity is set to
0. Regarding SC and SB , the similarity between
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f and rs was estimated as the maximum similarity
yielded when computing the similarities between
f and each fs ∈Ns. For the rest metrics, the sim-
ilarity between f and rs was estimated by averag-
ing the |Ns| similarities computed between f and
each fs∈Ns.
Heuristic features. Considering an unknown
fragment f and the set of training fragments Ns

corresponding to rule rs, in total nine features
were used: 1) the difference between the aver-
age length (in tokens) of fragments in Ns and the
length of f , 2) the difference between the average
number of low-level rules in Ns and the number
of low-level rules in f , 3) as 2) but considering
the lexical constituents instead of low-level rules,
4) the number of low-level rules shared between
Ns and f , 5) as 4) but considering the lexical con-
stituents instead of low-level rules, 6) a boolean
function that equals 1 if f is a substring of at least
one fs ∈ Ns, 7) a boolean function that equals 1 if
f shares the same lexical constituents at least one
fs ∈ Ns, 8) a boolean function that equals 1 if f
is shorter by one token compared to any fs ∈ Ns,
9) a boolean function that equals 1 if f is lengthier
by one token compared to any fs ∈ Ns.
Selection. The aforementioned features are used
for building a binary classifier for each rs ∈ R,
where 1 ≤ s ≤ m, for deciding whether f can
be regarded as a candidate member of rs or not.
Given an unknown fragment f these classifiers are
employed for estimating in total m probabilities
p(rs|f).

2.2 Similarity Metrics
Here, two types of similarity metrics are defined,
which are used for estimating S(f, rs) in (1).
String-based similarity. Consider two fragments
fi and fj whose sets of character bigrams are de-
noted as Mi and Mj , respectively. Also, Mmin =
min(|Mi |, |Mj |) and Mmax = max(|Mi |, |Mj |
). The similarity between fi and fj is based on
the overlap of their respective character bigrams
defined as (Jimenez et al., 2012):

SB(fi, fj) =
|Mi ∩Mj |

αMmax + (1− α)Mmin
, (2)

where 0≤α≤ 1, while, here we use α=0.5. The
similarity between a fragment f and a rule rs is
computed by averaging the similarities computed
between f and each fs∈Ns.
Context-based similarity. This is a corpus-based
metric relying on the distributional hypothesis of

meaning suggesting that similarity of context im-
plies similarity of meaning (Z. Harris, 1954). A
contextual window of size 2K+1 words is cen-
tered on the fragment of interest fi and lexical
features are extracted. For every instance of fi in
the corpus the K words left and right of fi for-
mulate a feature vector vi. For a given value of K
the context-based semantic similarity between two
fragments, fi and fj , is computed as the cosine of
their feature vectors: SK(fi, fj) = vi.vj

||vi|| ||vj || . The
elements of feature vectors can be weighted ac-
cording various schemes (E. Iosif and A. Potami-
anos, 2010), while, here we use a binary scheme.
The similarity between a fragment f and a rule
rs is computed by averaging the similarities com-
puted between f and each fs∈Ns.

2.3 Mapping of Unknown Fragments

The output of the described system is the mapping
of a fragment f to a single (i.e., one-to-one assign-
ment) high-level rule rs ∈ R, where 1 ≤ s ≤ m.
This is achieved by applying (1). The p(rs|f)
probabilities were estimated as described in Sec-
tion 2.1. The S(f, rs) similarities were estimated
using either SK or SB defined in Section 2.2.

3 Datasets and Experiments

Datasets. The data was organized with respect to
three different domains: 1) air travel (flight book-
ing, car rental etc.), 2) tourism (information for
city guide), and 3) finance (currency exchange). In
total, there are four separate datasets: two datasets
for the air travel domain in English (EN) and
Greek (GR), one dataset for the tourism domain
in English, and one dataset for the finance domain
in English.

The number of high-level rules for each dataset

Domain #rules #train frag. #test frag.
Travel:EN 32 982 284
Travel:GR 35 956 324

Tourism:EN 24 1004 285
Finance:EN 9 136 37

Table 1: Number of rules and train/test fragments.

are shown in Table 1, along with the number
of fragments included in training and test data.
Experiments. Regarding the computation of
perplexity-based features (defined in Section 2.1)
the SRILM toolkit (A. Stolcke, 2002) was used.
The n-gram probabilities were estimated over a
corpus that was created by aggregating all the
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valid fragments included in the training data.
For the computation of the context-based similar-
ity metric SK (defined in Section 2.2) a corpus
of web-harvested data was created for each do-
main/language. The context window size K was

Domain # sentences
Travel:EN 5721
Travel:GR 6359

Tourism:EN 829516
Finance:EN 168380

Table 2: Size of corpora used in SK metric.

set to 1. The size of the used corpora are presented
Table 2, while the process of corpus creation is
detailed in (Klasinas et al., 2013). The classifiers
used for the candidate selection module, described
in Section 2.1 were random forests with 50 trees
(L. Breiman, 2001).

4 Evaluation Metrics and Results

The proposed model defined by (1) was evaluated
in terms of weighted F-measure, (FM ). Initially,
we run our system using the training and develop-
ment set provided by the task organizers, in order
to tune the w and K parameters. The tuning was
conducted on the Travel English domain, while the
respective evaluation results are shown in Table 3
in terms of FM . We observe that the best re-

Weight w 0 1 50 500
FM 0.68 0.72 0.70 0.72

Table 3: Results for the tuning of w.

sults are achieved for w = 1 and w = 500. In
the case where w = 0 the rule mapping relies only
on the similarity metric. In addition, we exper-
imented with various values the context window
size K of the context-based similarity metric SK :
K = 1, 3, 7. For all values of K similar perfor-
mance was obtained (0.70). Given the aforemen-

Domains Baseline Run 1 Run 2 Run 3
Travel:EN 0.51 0.66 0.65 0.68
Travel:GR 0.26 0.52 0.49 0.49

Tourism:EN 0.87 0.86 0.85 0.86
Finance:EN 0.60 0.70 0.63 0.58

UA 0.56 0.69 0.66 0.65
WA 0.52 0.66 0.64 0.65

Table 4: Official results.

tioned tuning the following values were selected

for the official runs: w = 1, w = 500 and K = 1.
In total, three system runs were submitted:
Run 1. The character bigram similarity metric was
used, while w was set to 1.
Run 2. The context-based similarity metrics was
used with K = 1, while w was set to 1.
Run 3. The character bigram similarity metric was
used, while w was set to 500.
The results for the aforementioned runs, along
with the baseline performance are shown in Ta-
ble 4. An overview of the participating systems
suggests that our submission achieved the high-
est performance for almost all domains and lan-
guages. The weighted (WA) and unweighted (UA)
average across the 4 datasets are also presented,
where the weight depends on the number of rules
in the dataset. Using these measures, our main
run (Run 1) obtained the best results. We ob-
serve that the performance is consistently worse
for Runs 2 and 3, with the exception of the Travel
English dataset. Comparing the performance of
Runs 1 and 2, we observe that the character bigram
metric consistently outperforms the context-based
one. For individual datasets, our system underper-
forms for the Finance (in Run 3) and the Tourism
domain (in all Runs). For the case of the Finance
domain this may be attributed to the relatively lim-
ited training data.

5 Conclusions

We proposed a supervised grammar induction sys-
tem using the fusion of a grammar fragment se-
lection and similarity estimation modules. The
best configuration of our system was Run 1 which
achieved the highest performance compared to
other submissions, in almost all domains. To sum-
marize, 1) the selection module boost the sys-
tem’s performance significanlty, 2) the high per-
formance in different domains is a promising indi-
cator for domain and language portability. Future
work should involve the implementation of more
complex features for the candidate selection algo-
rithm and further investigation of phrase level sim-
ilarity metrics.
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