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Abstract
Shared Task 1 of SemEval-2014 com-
prised two subtasks on the same dataset
of sentence pairs: recognizing textual en-
tailment and determining textual similar-
ity. We used an existing system based on
formal semantics and logical inference to
participate in the first subtask, reaching
an accuracy of 82%, ranking in the top
5 of more than twenty participating sys-
tems. For determining semantic similar-
ity we took a supervised approach using a
variety of features, the majority of which
was produced by our system for recogniz-
ing textual entailment. In this subtask our
system achieved a mean squared error of
0.322, the best of all participating systems.

1 Introduction
The recent popularity of employing distributional
approaches to semantic interpretation has also lead
to interesting questions about the relationship be-
tween classic formal semantics (including its com-
putational adaptations) and statistical semantics.
A promising way to provide insight into these
questions was brought forward as Shared Task 1 in
the SemEval-2014 campaign for semantic evalua-
tion (Marelli et al., 2014). In this task, a system is
given a set of sentence pairs, and has to predict for
each pair whether the sentences are somehow re-
lated in meaning. Interestingly, this is done using
two different metrics: the first stemming from the
formal tradition (contradiction, entailed, neutral),
and the second in a distributional fashion (a simi-
larity score between 1 and 5). We participated in
this shared task with a system rooted in formal se-
mantics. In particular, we were interested in find-
ing out whether paraphrasing techniques could in-
crease the accuracy of our system, whether mean-
ing representations used for textual entailment are
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useful for predicting semantic similarity, and con-
versely, whether similarity features could be used
to boost accuracy of recognizing textual entail-
ment. In this paper we outline our method and
present the results for both the textual entailment
and the semantic similarity task.1

2 Recognizing Textual Entailment

2.1 Overview
The core of our system for recognizing textual en-
tailment works as follows: (i) produce a formal se-
mantic representation for each sentence for a given
sentence pair; (ii) translate these semantic repre-
sentations into first-order logic; (iii) use off-the-
shelf theorem provers and model builders to check
whether the first sentence entails the second, or
whether the sentences are contradictory. This is
essentially an improved version of the framework
introduced by Bos & Markert (2006).

To generate background knowledge that could
assist in finding a proof we used the lexical
database WordNet (Fellbaum, 1998). We also
used a large database of paraphrases (Ganitkevitch
et al., 2013) to alter the second sentence in case no
proof was found at the first attempt, inspired by
Bosma & Callison-Burch (2006). The core sys-
tem reached high precision on entailment and con-
tradiction. To increase recall, we used a classifier
trained on the output from our similarity task sys-
tem (see Section 3) to reclassify the “neutrals” into
possible entailments.

2.2 Technicalities
The semantic parser that we used is Boxer (Bos,
2008). It is the last component in the pipeline of
the C&C tools (Curran et al., 2007), comprising
a tokenizer, POS-tagger, lemmatizer (Minnen et

1To reproduce these results in a linux environment (with
SWI Prolog) one needs to install the C&C tools (this in-
cludes Boxer and the RTE system), the Vampire theorem
prover, the two model builders Paradox and Mace-2, and the
PPDB-1.0 XL database. Detailed instructions can be found in
the src/scripts/boxer/sick/README folder of the
C&C tools.
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al., 2001), and a robust parser for CCG (Steed-
man, 2001). Boxer produces semantic represen-
tations based on Discourse Representation Theory
(Kamp and Reyle, 1993). We used the standard
translation from Discourse Representation Struc-
tures to first-order logic, rather than the one based
on modal first-order logic (Bos, 2004), since the
shared task data did not contain any sentences with
propositional argument verbs.

After conversion to first-order logic, we
checked with the theorem prover Vampire (Ri-
azanov and Voronkov, 2002) whether a proof
could be found for the first sentence entailing the
second, and whether a contradiction could be de-
tected for the conjunction of both sentences trans-
lated into first-order logic. If neither a proof nor
a contradiction could be found within 30 seconds,
we used the model builder Paradox (Claessen and
Sörensson, 2003) to produce a model of the two
sentences separately, and one of the two sentences
together. However, even though Paradox is an ef-
ficient piece of software, it does not always return
minimal models with respect to the extensions of
the non-logical symbols. Therefore, in a second
step, we asked the model builder Mace-2 (Mc-
Cune, 1998) to construct a minimal model for the
domain size established by Paradox. These mod-
els are used as features in the similarity task (Sec-
tion 3).

Background knowledge is important to increase
recall of the theorem prover, but hard to acquire
automatically (Bos, 2013). Besides translating hy-
pernym relations of WordNet to first-order logic
axioms, we also reasoned that it would be benefi-
cial to have a way of dealing with multi-word ex-
pressions. But instead of translating paraphrases
into axioms, we used them to rephrase the input
sentence in case no proof or contradiction was
found for the original sentence pair. Given a para-
phrase SRC7→TGT, we rephrased the first sen-
tence of a pair only if SRC matches with up to
four words, no words of TGT were already in the
first sentence, and every word of TGT appeared in
the second sentence. The paraphrases themselves
were taken from PPDB-1.0 (Ganitkevitch et al.,
2013). In the training phrase we found that the XL
version (comprising o2m, m2o, phrasal, lexical)
gave the best results (using a larger version caused
a strong decrease in precision, while smaller ver-
sions lead to a decrease in recall).

We trained a separate classifier in order to re-
classify items judged by our RTE system as be-
ing neutral. This classifier uses a single feature,
namely the relatedness score for each sentence
pair. As training material, we used the gold relat-

edness scores from the training and trial sets. For
classification of the test set, we used the related-
ness scores obtained from our Semantic Similarity
system (see Section 3). The classifier is a Support
Vector Machine classifier, in the implementation
provided by Scikit-Learn (Pedregosa et al., 2011),
based on the commonly used implementation LIB-
SVM (Chang and Lin, 2011). We used the imple-
mentation’s standard parameters.

2.3 Results
We submitted two runs. The first (primary) run
was produced by a configuration that included re-
classifying the ’neutrals’. The second run is with-
out the reclassification of the neutrals. After sub-
mission we ran a system that did not use the para-
phrasing technique in order to measure what in-
fluence the PPDB had on our performance. The
results are summarized in Table 1. In the train-
ing phase we got the best results for the configu-
ration using the PPDB and reclassication, which
was submitted as our primary run.

Table 1: Results on the entailment task for various
system configurations.

System Configuration Accuracy
most frequent class baseline 56.7
−PPDB, −reclassification 77.6
+PPDB, −reclassification 79.6
+PPDB, +reclassification 81.6

In sum, our system for recognizing entailment
performed well reaching 82% accuracy and by
far outperforming the most-frequent class baseline
(Table 1). We show some selected examples illus-
trating the strengths of our system below.

Example 1627 (ENTAILMENT)
A man is mixing a few ingredients in a bowl
Some ingredients are being mixed in a bowl by a person

Example 2709 (CONTRADICTION)
There is no person boiling noodles
A woman is boiling noodles in water

Example 9051 (ENTAILMENT)
A pair of kids are sticking out blue and green colored tongues
Two kids are sticking out blue and green colored tongues

A proof for entailment is found for Ex. 1627,
because for passive sentences Boxer produces
a meaning representation equivalent to their ac-
tive variants. A contradiction is detected for
Ex. 2709 because of the way negation is han-
dled by Boxer. Both examples trigger background
knowledge from WordNet hyperonyms (man →
person; woman → person) that is used in the
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proofs.2 Ex. 9051 shows how paraphrasing helps,
here “a pair of” 7→ “two”.

3 Determining Semantic Similarity

3.1 Overview

The Semantic Similarity system follows a super-
vised approach to solving the regression problem
of determining the similarity between each given
sentence pair. The system uses a variety of fea-
tures, ranging from simpler ones such as word
overlap, to more complex ones in the form of
deep semantic features and features derived from a
compositional distributional semantic model. The
majority of these features are derived from the
models from our RTE system (see Section 2).

3.2 Technicalities

3.2.1 Regressor
The regressor used is a Random Forest Regressor
in the implementation provided by Scikit-Learn
(Pedregosa et al., 2011). Random forests are ro-
bust with respect to noise and do not overfit easily
(Breiman, 2001). These two factors make them a
highly suitable choice for our approach, since we
are dealing with a relatively large number of weak
features, i.e., features which may be seen as indi-
vidually containing a rather small amount of infor-
mation for the problem at hand.

Our parameter settings for the regressor is fol-
lows. We used a total of 1000 trees, with a maxi-
mum tree depth of 20. At each node in a tree the
regressor looked at maximum 3 features in order
to decide on the split. The quality of each such
split is determined using mean squared error as
measure. These parameter values were optimised
when training on the training set, with regards to
performance on the trial set.

3.2.2 Feature overview
We used a total of 32 features for our regres-
sor. Due to space constraints, we have sub-divided
our features into groups by the model/method in-
volved. For all features we compared the outcome
of the original sentence pair with the outcome of
the paraphrased sentence pairs (see Section 2.2)3.
If the paraphrased sentence pair yielded a higher
feature overlap score than the original sentence
pair, we utilized the former. In other words, we

2In the training data around 20% of the proofs for entail-
ment were established with the help of WordNet, but only 4%
for detecting contradictions.

3In addition to the PPDB we added handling of negations,
by removing some negations {not, n’t} and substituting oth-
ers {no:a, none:some, nobody:somebody}.

assume that the sentence pair generated with para-
phrases is a good representation of the original
pair, and that similarities found here are an im-
provement on the original score.

Logical model We used the logical models cre-
ated by Paradox and Mace for the two sentences
separately, as well as a combined model (see Sec-
tion 2.2). The features extracted from this model
are the proportion of overlap between the in-
stances in the domain, and the proportion of over-
lap between the relations in the model.

Noun/verb overlap We first extracted and lem-
matised all nouns and verbs from the sentence
pairs. With these lemmas we calculated two new
separate features, the overlap of the noun lemmas
and the overlap of the verb lemmas.

Discourse Representation Structure (DRS)
The two most interesting pieces of information
which easily can be extracted from the DRS mod-
els are the agents and patients. We first extracted
the agents for both sentences in a sentence pair,
and then computed the overlap between the two
lists of agents. Secondly, since all sentences in the
corpus have exactly one patient, we extracted the
patient of each sentence and used this overlap as a
binary feature.

Wordnet novelty We build one tree containing
all WordNet concepts included in the first sen-
tence, and one containing all WordNet concepts
of both sentences together. The difference in size
between these two trees is used as a feature.

RTE The result from our RTE system (entail-
ment, neutral or contradiction) is used as a feature.

Compositional Distributional Semantic Model
Our CDSM feature is based on word vectors de-
rived using a Skip-Gram model (Mikolov et al.,
2013a; Mikolov et al., 2013b). We used the pub-
licly available word2vec4 tool to calculate these
vectors. We trained the tool on a data set con-
sisting of the first billion characters of Wikipedia5

and the English part of the French-English 109

corpus used in the wmt11 translation task6. The
Wikipedia section of the data was pre-processed
using a script7 which made the text lower case, re-
moved tables etc. The second section of the data
was also converted to lower case prior to training.

We trained the vectors using the following pa-
rameter settings. Vector dimensionality was set

4code.google.com/p/word2vec/
5mattmahoney.net/dc/enwik9.zip
6statmt.org/wmt11/translation-task.html#download
7mattmahoney.net/dc/textdata.html
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Table 2: Pearson correlation and MSE obtained on the test set for each feature group in isolation.

Feature group p [−PPDB] p [+PPDB] MSE [−PPDB] MSE [+PPDB]
Logical model 0.649 0.737 0.590 0.476
Noun/verb overlap 0.647 0.676 0.592 0.553
DRS 0.634 0.667 0.610 0.569
Wordnet novelty 0.652 0.651 0.590 0.591
RTE 0.621 0.620 0.626 0.627
CDSM 0.608 0.609 0.681 0.679
IDs 0.493 0.493 0.807 0.807
Synset 0.414 0.417 0.891 0.889
Word overlap 0.271 0.340 0.944 0.902
Sentence length 0.227 0.228 0.971 0.971
All with IDs 0.836 0.842 0.308 0.297
All without IDs 0.819 0.827 0.336 0.322

to 1600 with a context window of 10 words. The
skip-gram model with hierarchical softmax, and a
negative sampling of 1e-3 was used.

To arrive at the feature used for our regressor,
we first calculated the element-wise sum of the
vectors of each word in the given sentences. We
then calculated the cosine distance between the
sentences in the sentence pair.

IDs One surprisingly helpful feature was each
sentence pair’s ID in the corpus.8 Since this
feature clearly is not representative of what one
would have access to in a real-world scenario, it
was not included in the primary run.

Synset Overlap We built one set for each sen-
tence pair consisting of each possible lemma form
of all possible noun synsets for each word. The
proportion of overlap between the two resulting
sets was then used as a feature. Given cases where
relatively synonymous words are used (e.g. kid
and child), these will often belong to the same
synset, thus resulting in a high overlap score.

Synset Distance We first generated each possi-
ble word pair consisting of one word from each
sentence. Using these pairings, we calculated
the maximum path similarity between the noun
synsets available for these words. This calculation
is restricted so that each word in the first sentence
in each pair is only used once.

Word overlap Our word overlap feature was
calculated by first creating one set per sentence,
containing each word occurring in that sentence.

8We discovered that the ordering of the entire data set was
informative for the prediction of sentence relatedness. We
have illustrated this by using the ordering of the sentences
(i.e. the sentence IDs) as a feature in our model, and thereby
obtaining better results. Relying on such a non-natural order-
ing of the sentences would be methodologically flawed, and
therefore this feature was not used in our primary run.

The four most common words in the corpus were
used as a stop list, and removed from each set. The
proportion of overlap between the two sets was
then used as our word overlap feature.

Sentence Lengths The difference in length be-
tween the sentence pairs proved to be a somewhat
useful feature. Although mildly useful for this par-
ticular data set, we do not expect this to be a par-
ticularly helpful feature in real world applications.

3.3 Results

We trained our system on 5000 sentence pairs, and
evaluated it on 4927 sentence pairs. Table 2 con-
tains our scores for the evaluation, broken up per
feature group. Our relatedness system yielded the
highest scores compared to all other systems in
this shared task, as measured by MSE and Spear-
man correlation scores. Although our system per-
formed slightly worse as measured by Pearson
correlation, there is no significant difference to the
scores obtained by the two higher ranked systems.

4 Conclusion

Our work shows that paraphrasing techniques can
be used to improve the results of a textual entail-
ment system. Additionally, the scores from our
semantic similarity measure could be used to im-
prove the scores of the textual entailment system.
Our work also shows that deep semantic features
can be used to predict semantic relatedness.

Acknowledgements

We thank Chris Callison-Burch, Juri Ganitkevitch and Ellie
Pavlick for getting the most out of PPDB. We also thank our
colleagues Valerio Basile, Harm Brouwer, Kilian Evang and
Noortje Venhuizen for valuable comments and feedback.

645



References
Johan Bos and Katja Markert. 2006. Recognising

textual entailment with robust logical inference. In
Joaquin Quinonero-Candela, Ido Dagan, Bernardo
Magnini, and Florence d’Alché Buc, editors, Ma-
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