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Abstract

This paper describes the SNAP system,
which participated in Task 4 of SemEval-
2014: Aspect Based Sentiment Analysis.
We use an XML-based pipeline that com-
bines several independent components to
perform each subtask. Key resources
used by the system are Bing Liu’s senti-
ment lexicon, Stanford CoreNLP, RFTag-
ger, several machine learning algorithms
and WordNet. SNAP achieved satisfactory
results in the evaluation, placing in the top
half of the field for most subtasks.

1 Introduction

This paper describes the approach of the SemaN-
tic Analyis Project (SNAP) to Task 4 of SemEval-
2014: Aspect Based Sentiment Analysis (Pontiki
et al., 2014). SNAP is a team of undergraduate
students at the Corpus Linguistics Group, FAU
Erlangen-Nürnberg, who carried out this work as
part of a seminar in computational linguistics.

Task 4 was divided into the four subtasks As-
pect term extraction (1), Aspect term polarity (2),
Aspect category detection (3) and Aspect category
polarity (4), which were evaluated in two phases
(A: subtasks 1/3; B: subtasks 2/4). Subtasks 1 and
3 were carried out on two different datasets, one
of laptop reviews and one of restaurant reviews.
Subtasks 2 and 4 only made use of the latter.
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Task Dataset Rank Score Best
1 Lap 10 of 21 0.624 0.746
1 Res 20 of 21 0.465 0.840
3 Res 6 of 15 0.782 0.886
2 Lap 7 of 23 0.641 0.705
2 Res 12 of 24 0.708 0.810
4 Res 11 of 18 0.696 0.829

Table 1: Ranking among constrained systems.

The developed system consists of one module
per subtask, in addition to a general infrastruc-
ture and preprocessing module, All modules ac-
cept training and test data in the XML format spec-
fied by the task organizers. The modules can be
combined into a pipeline, where each step adds
new annotation corresponding to one of the four
subtasks.

Table 1 shows our ranking among all con-
strained systems (counting only the best run from
each team), the score achieved by SNAP (accu-
racy or F-score, depending on subtask), and the
score achieved by the best system in the respec-
tive subtask. Because of a preprocessing mistake
that was only discovered after phase A of the eval-
uation had ended, results for subtasks 1 and 3 are
significantly lower than the results achieved dur-
ing development of the system.

2 Sentiment lexicon

Early on in the project it was decided that a com-
prehensive, high-quality sentiment lexicon would
play a crucial role in building a successful sys-
tem. After a review of several existing lexica, Bing
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Liu’s sentiment word list (Hu and Liu, 2004) was
taken as a foundation and expanded with extensive
manual additions.

The first step was an exhaustive manual web-
search to find additional candidates for the lexicon.
The candidates were converted to a common for-
mat, and redundant entries were discareded. The
next step consisted of further expansion with the
help of online thesauri, from which large num-
ber of synonyms and antonyms for existing entries
were obtained. Since the coverage of the lexicon
was still found to be insufficient, it was further
complemented with entries from two other exist-
ing sentiment lexica, AFINN (Nielsen, 2011) and
MPQA (Wilson et al., 2005).

Finally the augmented lexicon was compared
with the original word lists from AFINN, MPQA
and Bing Liu in order to measure the reliabilty of
the entries. The reliability score of each entry is
the number of sources in which it is found.

3 Infrastructure and preprocessing

Within the scope of Task 4 – but not one of the
official subtasks – the goal of the infrastructure
module was (i) to support the other modules with
a set of project-specific tools and (ii) to provide
a common API to the training and test data aug-
mented with several layers of linguistic annota-
tion. In order to roll out the required data as
quick as possible, the Stanford CoreNLP suite1

was used as an off-the-shelf tool. The XML files
provided by the task organizers were parsed with
the xml.etree.ElementTree API, which is part of
the standard library of Python 2.7.

Since the module for subtask 1 was pursuing an
IOB-tagging approach for aspect term identifica-
tion, the part-of-speech tags provided by CoreNLP
had to be extended. During the process of merging
the original XML files with the CoreNLP annota-
tions, IOB tags were generated indicating whether
each token is part of an aspect term or not. See
Section 4 for further information.

For determining the polarity of an aspect term,
the subtask 2 module made use of syntactic depen-
dencies between words (see Section 5 for details).
For this purpose, the dependency trees produced
by CoreNLP were converted into a more accessi-
ble format with the help of the Python software
package NetworkX.2.

1http://nlp.stanford.edu/software/corenlp.shtml
2http://networkx.github.io/

4 Aspect term extraction

The approach chosen by the aspect term extrac-
tion module (subtask 1) was to treat aspect term
extraction as a tagging task. We used a standard
IOB tagset indicating whether each token is at the
beginning of an aspect term (ATB), inside an as-
pect term (ATI), or not part of an aspect term at
all (ATX).

First experiments were carried out with uni-
gram, bigram and trigram taggers implemented in
NLTK (Bird et al., 2009), which were trained on
IOB tags derived from the annotations in the Task
4 gold standard (comprising both trial and training
data). We also tested higher-order n-gram taggers
and the NLTK implementation of the Brill tagger
(Brill, 1992).

For a more sophisticated approach we used RF-
Tagger (Schmid and Laws, 2008), which extends
the standard HMM tagging model with complex
hidden states that consist of features correspond-
ing to different pieces of information. RFTagger
was developed for morphological tagging, where
complex tags such as N.Reg.Nom.Sg.Neut
are decomposed into the main syntactic category
(N) and additional morpho-syntactic features rep-
resenting case (Nom), number (Sg), etc.

In our case, the tagger was used for joint an-
notation of part-of-speech tags and IOB tags for
the aspect term boundaries, based on the ratio-
nale that the additional information encoded in
the hidden states (compared to a simple IOB tag-
ger) would allow RFTagger to learn more mean-
ingful aspect term patterns. We decided to en-
code the IOB tags as the main category and the
part-of-speech tags as additional features, since
changing these categories, meaning POS tags as
the main category and IOB tags as additional fea-
tures, had resulted in lesser performance. The
training data were thus converted into word-
annotation pairs such as screen_AT/ATB.NN
or beautiful/ATX.JJ. Note that known as-
pect terms from the gold standard (as well as ad-
ditional candidates that were generated through
comparisons of known aspect terms with lists from
WordNet) were extended with the suffix _AT in a
preprocessing step. Our intention was to enable
the tagger to learn directly that tokens with this
suffix are likely to be aspect terms.

Table 2 shows tagging accuracy for different al-
gorithms, computed by ten-fold cross-validation
over a gold standard comprising the training and
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Tagger Rest. Laptops
Unigram 83.41% 83.91%
Bigram (backoff: U) 85.37% 85.74%
Trigram (backoff: U+Bi) 85.41% 86.33%
Brill (backoff: U+Bi+T) 85.48% 86.47%
RFTagger 95.20% 96.47%

Table 2: Accuracy of different aspect term taggers.

trial data sets. The table shows that the bigram, tri-
gram and Brill taggers achieve only marginal im-
provements over a simplistic unigram tagger, even
when they are combined through back-off linking.
The RFTagger achieved by far the best accuracy
on both data sets.

4.1 Results and debugging

Our final results for the full aspect term extraction
procedure are shown in Table 3.

Score Rest. Laptops
Precision 57.14% 64.54%
Recall 39.15% 60.40%
F1-Score 46.47% 62.40%

Table 3: Aspect term extraction results.

The huge difference between tagging accuracy
achieved in the development phase and the aspect
term extraction quality obtained on the SemEval-
2014 test set is caused by different factors. First,
Table 2 shows the tagging accuracy across all to-
kens, not limited to aspect terms. A tagger that
works particularly well for many irrelevant tokens
(punctuation, verbs, etc.), correctly marking them
ATX, may achieve high accuracy even if it has low
recall on tokens belonging to aspect terms. Sec-
ond, the official scores only consider an aspect
term candidate to be a true positive if it covers
exactly the same tokens as the gold standard an-
notation. If the tagger disagrees with the human
annotators on whether an adjective or determiner
should be considered part of an aspect term, this
will be counted as a mistake despite the overlap.
Thus, even a relatively small number of tagging
mistakes near aspect term boundaries will be pun-
ished severly in the evaluation. Unseen words as
well as long or unusual noun phrases turned out to
be particularly difficult.

Table 3 indicates a serious problem with the
restaurant data, which has surprisingly low recall,

resulting in an F1-score almost 16 percent points
lower than for the laptop data. A careful exami-
nation of the trial, training and test data revealed
an early mistake in the preprocessing code as the
main culprit. Once this mistake was corrected, the
recall score for restaurants was similar to the score
for laptops.

5 Aspect term polarity

Subtask 2 is concerned with opinion sentences,
i.e. sentences that contain one or more aspect
terms and express subjective opinions about (some
of) these aspects. Such opinions are expressed
through opinion words; common opinion words
with their corresponding confidence values (nu-
meric values from 1 to 6 expressing the level of
certainty that a word is positive or negative, cf.
Sec. 2) are collected in sentiment lexica.

The preprocessing stage in this subtask starts
with a sentence segmentation step that uses the
output of the Stanford CoreNLP parser.3 All de-
pendencies map onto a directed graph represen-
tation where words of each sentence are nodes
in the graph and grammatical relations are edge
labels. All aspect terms (Sec. 2) are marked in
each dependency graph. When processing such a
graph we extract all positive and negative opinion
words occurring in each sentence by comparing
them with word lists contained in our sentiment
lexica. A corresponding confidence value from
lexica is assigned for each opinion word, the num-
ber of positive and negative aspect terms occurring
in each sentence are counted and their confidence
values are summed up. These values serve as fea-
tures for supervised machine learning using algo-
rithms implemented in scikit-learn (Pedregosa et
al., 2011).

All opinion words that build a dependency with
an aspect term are stored for each sentence. A
dominant word of each dependency is stored as a
governor, whereas a subordinate one is stored as a
dependent. Both direct and indirect dependencies
are processed. If there are several indirect depen-
dencies to an aspect term, they are processed re-
cursively. Using lists of extracted dependencies
between opinion words and aspect terms hand-
writen rules assign corresponding confidence val-
ues to aspect terms.

3nlp.stanford.edu/software/dependencies manual.pdf
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5.1 Features based on a sentiment lexica

The extended sentiment dictionaries were used to
extract five features: I) tokens expressing a pos-
itive sentiment belonging to one aspect term, II)
tokens expressing a negative sentiment, III) con-
fidence values of positive tokens, IV) confidence
values of negative tokens, V) a sum of all confi-
dence values for all positive and all negative opin-
ion words occurring in a sentence.

5.2 Features based on hand-written rules

We made use of direct and indirect negation mark-
ers, so that all opinion words belonging to a
negated aspect term swap their polarity signs. We
added rules for negative particles not and no that
directly precede an opinion word, for adverbs
barely, scarcely and too, for such constructions
as could have been and wish in the subjunctive
mood. After swapping polarity signs of opinion
words, a general set of hand-written rules was ap-
plied to the graph dependencies. The rules fol-
low the order of importance of dependencies scal-
ing from least important up to most important.
We placed the dependencies in the following or-
der: acomp, advmod, nsubjpass, conj and, amod,
prep of, prep worth, prep on, prep in, nsubj, inf-
mod, dobj, xcomp, rcmod, conj or, appos. All de-
pendencies can be grouped into three categories
based on the direction of the polarity assignment.
The first group (acomp, advmod, amod, rcmod,
prep in) includes dependencies where a governor
of a dependency takes over polarity of a dependent
if the latter is defined. The second group (infmod,
conj or, prep on, prep worth, prep of, conj and)
covers dependencies in which a dependent ele-
ment takes over polarity of a governor if the lat-
ter is defined. The third group (dobj, xcomp) is
for cases when both governor and dependent are
defined. Here a governor takes over polarity of a
dependent.

5.3 Experiments

In this section we compare two approches to as-
pect term polarity detection. The first approach
simply counts all positive and negative words in
each sentence and then assigns a label based on
which of the two counts is larger. It does not make
use of machine learning techniques and its accu-
racy is only about 54%. Results improve signifi-
cantly with supervised machine learning based on
the feature sets described above. We experimented

with different classifiers (Maximum Entropy, Lin-
ear SVM and SVMs with RBF kernel) and var-
ious subsets of features. By default, we worked
on the level of single opinion words that express
a positive or negative polarity (sg). We added
the following features in different combinations:
an extended list of opinion words (ex) obtained
from a distribution semantic model, based on near-
est neighbours of known opinion words (Proisl et
al., 2013); potential misspellings of know opin-
ion words, within a maximal Levenshtein distance
of 1 (lv); word combinations and fixed phrases
(ml) containing up to 3 words (e.g., good man-
nered, put forth, tried and true, up and down);
and the sums of positive and negative opinion
words in the whole sentence (st). The best results
for the laptops data were achieved with a Max-
imum Entropy classifier, excluding misspellings
(lv) and word combinations (ml); the correspond-
ing line in Table 4 is highlighted in bold font.
Even though MaxEnt achieved the best results dur-
ing development, we decided to use SVM with a
RBF kernel for the test set, assuming that it would
be able to exploit interdependencies between fea-
tures. The accuracy achieved by the submitted
system is highlighted in italics in the table. The
training test data provided for restaurants and lap-
tops categories were split equally into two sets
where the first set (first half) was used for training
a model and the second set was used for the test
and evaluation stages. Experiments on the restau-
rants data produced similar results.

classifier sg ex lv ml st Acc
MaxEnt + + – – – 0.5589
MaxEnt + + + – – 0.4905
MaxEnt + + – + – 0.5479
MaxEnt + + – – + 0.6506
MaxEnt + + – + + 0.5742
SVMrbf + + – – – 0.5581
SVMrbf + + + – – 0.4905
SVMrbf + + – + – 0.5479
SVMrbf + + – – + 0.6402
SVMrbf + + – + + 0.5717

Table 4: Results for laptops category on train set.

6 Aspect category detection

Subtask 3 deals with determining which aspect
categories out of a predefined set occur in a given
sentence. The developed module consists of two
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independent parts – one based on machine learn-
ing, the other on similarities between WordNet
synsets (“synonym sets”, roughly corresponding
to concepts). While both approaches achieved
similar performance during development, combin-
ing them resulted in overall better scores. How-
ever, the success of this method crucially depends
on accurate indentification of aspect terms.

6.1 A WordNet-based approach4

The WordNet-based component operates on previ-
ously identified aspect terms (from the gold stan-
dard in the evaluation, but from the module de-
scribed in Sec. 4 in a real application setting).
For each term, it finds all synsets and compares
them to a list of “key synsets” that characterize
the different aspect categories (e.g. the category
food is characterized by the key synset meal.n.01,
among others). The best match is chosen and
added to an internal lexicon, which maps each
unique phrase appearing as an aspect term to ex-
actly one aspect category. As a similarity measure
for synsets we used path similarity, which deter-
mines the length of the shortest path between two
synsets in the WordNet hypernym/hyponym tax-
onomy. Key synsets were extracted from a list of
high frequency terms and tested manually to cre-
ate an accurate represenation for each category.

In the combined approach this component was
taken as a foundation and was augmented by high-
confidence suggestions from the machine learning
component (see below).

Additional extensions include a high-
confidence lexicon based on nearest neighbours
from a distributional semantic model, a rudi-
mentary lexicon of international dishes, and
the application of a spellchecker; together, they
accounted only for a small increase in F-score on
the development data (from 0.758 to 0.768).

6.2 A machine learning approach5

The machine learning component is essentially a
basic bag-of-words model. It employs a multino-
mial Naive Bayes classifier in a one-vs-all setup
to achieve multi-label classification. In addition
to tuning of the smoothing parameters, a probabil-
ity threshold was introduced that every predicted
category has to pass to be assigned to a sentence.

4We used the version of WordNet included in NLTK 2.0.4
(Bird et al., 2009), accessed through the NLTK API.

5We used machine learning algorithms implemented in
scikit-learn 0.14.1 (Pedregosa et al., 2011).

Test Train AT Mode F1
SE14 Dev Sub1 All 0.782
SE14 Dev* Sub1 WN 0.666
SE14 Dev Sub1* ML 0.788
SE14 Dev Gold All 0.848
SE14 Dev* Gold WN 0.829
SE14 Dev Gold* ML 0.788
Dev (cv) Dev Gold All 0.800
Dev (cv) Dev* Gold WN 0.768
Dev (cv) Dev Gold* ML 0.769

*indicates data sets not used by a given component

Table 5: Aspect category detection results.

Different thresholds were used for the stand-alone
component (th = 0.625) and the combined ap-
proach (th = 0.9). In the latter case all predici-
tions of the WordNet-based component were ac-
cepted, but only high-confidence predictions from
the Naive Bayes classifier were added.

6.3 Results

Table 5 summarizes the results of different exper-
iments with aspect category detection. In all cases
the training data consisted of the combined official
train and trial sets (Dev). The last three rows show
results obtained by ten-fold cross-validation in the
development phase, the other rows show the cor-
responding results on the official test set (SE14).
The first three rows are based on automatically de-
tected aspect terms from the module described in
Sec. 4 (Sub 1), the other rows used gold standard
aspect terms. Separate results are provided for the
combined approach (Mode: All) as well as for the
two individual components (WN = WordNet, ML
= machine learning). Note that the WN compo-
nent does not require any training data, while the
ML component does not make use of aspect terms
marked in the input.

With gold standard aspect terms, the WordNet-
based approach is equal to or better than the Naive
Bayes classifier, and best results are achived by a
combination of the two components. However, the
poor accuracy of the automatic aspect term extrac-
tion (cf. Table 3) has a disastrous effect: even the
combined approach used in the official submis-
sion performs less well than the ML component
alone. Nevertheless the experiment with gold stan-
dard aspect terms suggests that the matching from
aspect term to category works quite well, with
a small additional improvement from the Naive
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Bayes bag-of-words model.

7 Aspect category polarity

The general approach was to allocate each aspect
term to the corresponding aspect categories. A
simple rule set was then used to determine the po-
larity of each aspect category based on the polari-
ties of the aligned aspect terms. In cases where no
aspect terms are marked (but sentences are still la-
belled with aspect categories), the idea was to fall
back on the sentiment values for the entire sen-
tences provided by the CoreNLP suite.6

7.1 Term / category alignment

To establish a basis for creating the mapping rules,
the first step was to work out the distribution of
aspect terms and aspect categories in the train-
ing data. The most common case is that an as-
pect category aligns with a single aspect term
(1476×); there are also many aspect categories
with multiple aspect terms (1179×) and some as-
pect categories without any aspect terms. Since
the WordNet-Approach from Sec. 6 showed rela-
tively good results (especially if gold standard as-
pect terms are available, which is the case here),
a modified version was used to assign each aspect
term to one of the annotated categories.

7.2 Polarity allocation

After the assignment of aspect terms to their ac-
cording aspect category – if needed – the aspect
category polarity can be determined. For this, the
polarity values of all aspect terms assigned to this
category were collected, and duplicates were re-
moved in order to produce a unique set (e.g. 1,
1, -1, 0, 0 would be reduced to 1, -1, 0). A set
with both negative and positive polarity values in-
dicates a conflict for the corresponding aspect cat-
egory, while a neutral polarity value would be ig-
nored, if positive or negative polarity values occur.
Our method achieved an accuracy of 89.16% for
sentences annotated with just a single aspect cat-
egory. In cases where only one aspect term had
been assigned to a aspect category the accuracy
was unsuprisingly high (96.61%), whereas the ac-
curacy decreased in cases of multiple assigned as-
pect terms (78.44%). For aspect categories with-
out aligned aspect terms, as well as the category
anecdotes/miscellaneous, the sentiment values of
the CoreNLP sentiment analysis tool had to be

6http://nlp.stanford.edu/software/corenlp.shtml

used, which led to a poor accuracy in those cases,
namely 52.74%.

7.3 Results
On the official test set, the module for subtask 4
achieved an accuracy of 69.56%. An important
factor is the very low accuracy in cases where the
CoreNLP sentiment value for the entire sentence
had to be used. We expect a considerable improve-
ment from using a modified version of the subtask
2 module (Sec. 5) to compute overall sentence po-
larity.

8 Conclusion

We have shown a modular system working as a
pipeline that modifies the input sentences step by
step by adding new information as XML tags.
Aspect term extraction was handled as a tagging
task that utilized an IOB tagset to find aspect
terms with the final version relying on Schmid’s
RFTagger. Determination of aspect term polar-
ity was achieved through a machine learning ap-
proach that uses SVMs with RBF kernel. This
was supported by an augmented sentiment lexicon
based on several different sources, which was ex-
panded manually by a team of students. Aspect
category detection in turn employs a combination
approach of an algorithm depending on WordNet
synsets and a bag-of-words Naive Bayes classifier.
Finally aspect category polarity was calculated by
combining the results from the last two modules.

Overall results were satisfactory, being mostly
in the top half of submitted systems. During phase
A of testing (subtasks 1 and 3), a preprocessing er-
ror caused a massive drop in performance in aspect
term extraction. This carried over to the other sub-
task, because the module uses aspect terms among
other features to identify aspect categories. Scores
for phase B (subtasks 2 and 4) were very close to
test results during development with the exception
of cases where the CoreNLP sentiment value for
an entire sentence had to be used.
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