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Abstract

This paper presents our approach to se-
mantic relatedness and textual entailment
subtasks organized as task 1 in SemEval
2014. Specifically, we address two ques-
tions: (1) Can we solve these two sub-
tasks together? (2) Are features proposed
for textual entailment task still effective
for semantic relatedness task? To address
them, we extracted seven types of features
including text difference measures pro-
posed in entailment judgement subtask, as
well as common text similarity measures
used in both subtasks. Then we exploited
the same feature set to solve the both sub-
tasks by considering them as a regression
and a classification task respectively and
performed a study of influence of differ-
ent features. We achieved the first and the
second rank for relatedness and entailment
task respectively.

1 Introduction

Distributional Semantic Models (DSMs)(surveyed
in (Turney et al., 2010)) exploit the co-occurrences
of other words with the word being modeled to
compute the semantic meaning of the word un-
der the distributional hypothesis: “similar words
share similar contexts” (Harris, 1954). Despite
their success, DSMs are severely limited to model
the semantic of long phrases or sentences since
they ignore grammatical structures and logical
words. Compositional Distributional Semantic
Models (CDSMs)(Zanzotto et al., 2010; Socher et
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al., 2012) extend DSMs to sentence level to cap-
ture the compositionality in the semantic vector
space, which has seen a rapidly growing interest
in recent years. Although several CDSMs have
been proposed, benchmarks are lagging behind.
Previous work (Grefenstette and Sadrzadeh, 2011;
Socher et al., 2012) performed experiments on
their own datasets or on the same datasets which
are limited to a few hundred instances of very short
sentences with a fixed structure.

To provide a benchmark so as to compare dif-
ferent CDSMs, the sentences involving composi-
tional knowledge task in SemEval 2014 (Marelli et
al., 2014) develops a large dataset which is full of
lexical, syntactic and semantic phenomena. It con-
sists of two subtasks: semantic relatedness task,
which measures the degree of semantic relatedness
of a sentence pair by assigning a relatedness score
ranging from 1 (completely unrelated) to 5 (very
related); and textual entailment (TE) task, which
determines whether one of the following three re-
lationships holds between two given sentences A
and B: (1) entailment: the meaning of B can be
inferred from A; (2) contradiction: A contradicts
B; (3) neutral: the truth of B cannot be inferred on
the basis of A.

Semantic textual similarity (STS) (Lintean and
Rus, 2012) and semantic relatedness are closely
related and interchangeably used in many liter-
atures except that the concept of semantic simi-
larity is more specific than semantic relatedness
and the latter includes concepts as antonymy and
meronymy. In this paper we regard the semantic
relatedness task as a STS task. Besides, regardless
of the original intention of this task, we adopted
the mainstream machine learning methods instead
of CDSMs to solve these two tasks by extracting
heterogenous features.
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Like semantic relatedness, TE task (surveyed
in (Androutsopoulos and Malakasiotis, 2009)) is
also closely related to STS task since in TE task
lots of similarity measures at different levels are
exploited to boost classification. For example,
(Malakasiotis and Androutsopoulos, 2007) used
ten string similarity measures such as cosine sim-
ilarity at the word and the character level. There-
fore, the first fundamental question arises, i.e.,
“Can we solve both of these two tasks together?”
At the same time, since high similarity does not
mean entailment holds, the TE task also utilizes
other features besides similarity measures. For ex-
ample, in our previous work (Zhao et al., 2014)
text difference features were proposed and proved
to be effective. Therefore, the second question sur-
faces here, i.e., “Are features proposed for TE task
still effective for STS task?” To answer the first
question, we extracted seven types of features in-
cluding text similarity and text difference and then
fed them to classifiers and regressors to solve TE
and STS task respectively. Regarding the second
question, we conducted a series of experiments
to study the performance of different features for
these two tasks.

The rest of the paper is organized as follows.
Section 2 briefly describes the related work on
STS and TE tasks. Section 3 presents our systems
including features, learning methods, etc. Section
4 shows the experimental results on training data
and Section 5 reports the results of our submitted
systems on test data and gives a detailed analysis.
Finally, Section 6 concludes this paper with future
work.

2 Related Work

Existing work on STS can be divided into 4
categories according to the similarity measures
used (Gomaa and Fahmy, 2013): (1) string-based
method (Bär et al., 2012; Malakasiotis and An-
droutsopoulos, 2007) which calculates similarities
using surface strings at either character level or
word level; (2) corpus-based method (Li et al.,
2006) which measures word or sentence similar-
ities using the information gained from large cor-
pora, including Latent Semantic Analysis (LSA),
pointwise mutual information (PMI), etc. (3)
knowledge-based method (Mihalcea et al., 2006)
which estimates similarities with the aid of ex-
ternal resources, such as WordNet1; (4) hybrid

1http://wordnet.princeton.edu/

method (Zhu and Lan, 2013; Croce et al., 2013)
which integrates multiple similarity measures and
adopts supervised machine learning algorithms to
learn the different contributions of different fea-
tures.

The approaches to the task of TE can be roughly
divided into two groups: (1) logic inference
method (Bos and Markert, 2005) where automatic
reasoning tools are used to check the logical repre-
sentations derived from sentences and (2) machine
learning method (Zhao et al., 2013; Gomaa and
Fahmy, 2013) where a supervised model is built
using a variety of similarity scores.

Unlike previous work which separately ad-
dressed these two closely related tasks by using
simple feature types, in this paper we endeavor to
simultaneously solve these two tasks by using het-
erogenous features.

3 Our Systems

We consider the two tasks as one by exploiting the
same set of features but using different learning
methods, i.e., classification and regression. Seven
types of features are extracted and most of them
are based on our previous work on TE (Zhao et
al., 2014) and STS (Zhu and Lan, 2013). Many
learning algorithms and parameters are examined
and the final submitted systems are configured ac-
cording to the preliminary results on training data.

3.1 Preprocessing
Three text preprocessing operations were per-
formed before we extracted features, which in-
cluded: (1) we converted the contractions to their
formal writings, for example, doesn’t is rewrit-
ten as does not. (2) the WordNet-based Lemma-
tizer implemented in Natural Language Toolkit2

was used to lemmatize all words to their nearest
base forms in WordNet, for example, was is lem-
matized to be. (3) we replaced a word from one
sentence with another word from the other sen-
tence if the two words share the same meaning,
where WordNet was used to look up synonyms.
No word sense disambiguation was performed and
all synsets for a particular lemma were considered.

3.2 Feature Representations
3.2.1 Length Features (len)
Given two sentences A and B, this feature type
records the length information using the follow-

2http://nltk.org/
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ing eight measure functions:
|A|, |B|, |A−B|, |B −A|, |A ∪B|, |A ∩B|, (|A|−|B|)

|B| ,
(|B|−|A|)

|A|

where |A| stands for the number of non-repeated
words in sentence A , |A−B| means the number of
unmatched words found in A but not in B , |A ∪B|
stands for the set size of non-repeated words found
in either A or B and |A ∩ B| means the set size of
shared words found in both A and B .

Moreover, in consideration of different types of
words make different contributions to text similar-
ity, we also recorded the number of words in set
A−B and B −A whose POS tags are noun, verb,
adjective and adverb respectively. We used Stan-
ford POS Tagger3 for POS tagging. Finally, we
collected a total of sixteen features.

3.2.2 Surface Text Similarity (st)
As shown in Table 1, we adopted six commonly
used functions to calculate the similarity between
sentence A and B based on their surface forms,
where −→x and −→y are vectorial representations of
sentences A and B in tf ∗ idf schema.

Measure Definition
Jaccard Sjacc = |A ∩ B|/|A ∪ B|

Dice Sdice = 2 ∗ |A ∩ B|/(|A|+ |B|)
Overlap Sover = |A ∩ B|/|A| and |A ∩ B|/|B|
Cosine Scos = −→x · −→y /(∥ −→x ∥ · ∥ −→y ∥)

Manhattan M(−→x ,−→y ) =
n∑

i=1
|xi − yi|

Euclidean E(−→x ,−→y ) =

√
n∑

i=1
(xi − yi)2

Table 1: Surface text similarity measures and their
definitions used in our experiments.

We also used three statistical correlation coef-
ficients (i.e., Pearson, Spearmanr, Kendalltau) to
measure similarity by regarding the vectorial rep-
resentations as different variables. Thus we got ten
features at last.

3.2.3 Semantic Similarity (ss)
The above surface text similarity features only
consider the surface words rather than their ac-
tual meanings in sentences. In order to build the
semantic representations of sentences, we used a
latent model to capture the contextual meanings
of words. Specifically, we adopted the weighted
textual matrix factorization (WTMF) (Guo and
Diab, 2012) to model the semantics of sentences
due to its reported good ability to model short
texts. This model first factorizes the original term-
sentence matrix X into two matrices such that

3http://nlp.stanford.edu/software/tagger.shtml

Xi,j ≈ P T
∗,i.Q∗,j , where P∗,i is a latent seman-

tic vector profile for word wi and Q∗,j is a vector
profile that represents the sentence sj . Then we
employed the new representations of sentences,
i.e., Q, to calculate the semantic similarity be-
tween sentences using Cosine, Manhattan, Eu-
clidean, Pearson, Spearmanr, Kendalltau measures
respectively, which results in six features.

3.2.4 Grammatical Relationship (gr)

The grammatical relationship feature measures
the semantic similarity between two sentences
at the grammar level and this feature type was
also explored in our previous work (Zhao et al.,
2013; Zhu and Lan, 2013). We used Stanford
Parser4 to acquire the dependency information
from sentences and the grammatical information
are represented in the form of relation unit, e.g.
nsubj(example, this), where nsubj stands for a de-
pendency relationship between example and this.
We obtained a sequence of relation units for each
sentence and then used them to estimate similarity
by adopting eight measure functions described in
Section 3.2.1, resulting in eight features.

3.2.5 Text Difference Measures (td)

There are two types of text difference measures.
The first feature type is specially designed for
the contradiction entailment relationship, which
is based on the following observation: there ex-
ist antonyms between two sentences or the nega-
tion status is not consistent (i.e., one sentence has
a negation word while the other does not have) if
contradiction holds. Therefore we examined each
sentence pair and set this feature as 1 if at least one
of these conditions is met, otherwise -1. WordNet
was used to look up antonyms and a negation list
with 28 words was used.

The second feature type is extracted from two
word sets A−B and B−A as follows: we first cal-
culated the similarities between every word from
A − B and every word from B − A , then took the
maximum, minimum and average value of them as
features. In our experiments, four WordNet-based
similarity measures (i.e., path, lch, wup, jcn (Go-
maa and Fahmy, 2013)) were used to calculate the
similarity between two words.

Totally, we got 13 text difference features.

4http://nlp.stanford.edu/software/lex-parser.shtml
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3.2.6 String Features (str)
This set of features is taken from our previous
work (Zhu and Lan, 2013) due to its superior per-
formance.
Longest common sequence (LCS) We computed
the LCS similarity on the original and lemmatized
sentences. It was calculated by finding the maxi-
mum length of a common contiguous subsequence
of two strings and then dividing it by the smaller
length of two strings to eliminate the impacts of
length imbalance.
Jaccard similarity using n-grams We obtained
n-grams at three different levels, i.e., the origi-
nal word level, the lemmatized word level and the
character level. Then these n-grams were used for
calculating Jaccard similarity defined in Table 1.
In our experiments, n = {1, 2, 3} were used for
the word level and n = {2, 3, 4} were used for the
character level.
Weighted word overlap (WWO) Since not all
words are equally important, the traditional Over-
lap similarity may not be always reasonable. Thus
we used the information content of word w to es-
timate the importance of word w as follows:

ic(w) = ln
∑

w′∈C freq(w′)
freq(w)

where C is the set of words in the corpus and
freq(w) is the frequency of the word w in the
corpus. To compute ic(w), we used the Web 1T
5-gram Corpus 5. Then the WWO similarity of
two sentence s1 and s2 was calculated as follows:

Simwwo(s1, s2) =

∑
w∈s1∩s2

ic(w)∑
w′∈s2

ic(w′)

Due to its asymmetry, we used the harmonic mean
of Simwwo(s1, s2) and Simwwo(s2, s1) as the fi-
nal WWO similarity. The WWO similarity is cal-
culated on the original and lemmatized strings re-
spectively.

Finally, we got two LCS features, nine Jaccard
n-gram features and two WWO features.

3.2.7 Corpus-based Features (cps)
Two types of corpus-based feature are also bor-
rowed from our previous work (Zhu and Lan,
2013), i.e., vector space sentence similarity and
co-occurrence retrieval model (CRM), which re-
sults in six features.

5https://catalog.ldc.upenn.edu/LDC2006T13

Co-occurrence retrieval model (CRM) The
CRM word similarity is calculated as follows:

SimCRM (w1, w2) =
2 ∗ |c(w1) ∩ c(w2)|
|c(w1)|+ |c(w2)|

where c(w) is the set of words that co-occur with
word w. We used the 5-gram part of the Web 1T
5-gram Corpus to obtain c(w). We only consid-
ered the word w with |c(w)| > T and then took
the top 200 co-occurring words ranked by the co-
occurrence frequency as its c(w). In our experi-
ment, we set T = {50, 200}. To propagate the
similarity from words to sentences, we adopted
the best alignment strategy used in (Banea et al.,
2012) to align two sentences.
Vector space sentence similarity This feature set
is taken from (Šarić et al., 2012), which is based
on distributional vectors of words. First we per-
formed latent semantic analysis (LSA) over two
corpora, i.e., the New York Times Annotated Cor-
pus (NYT) (Sandhaus, 2008) and Wikipedia, to es-
timate the distributions of words. Then we used
two strategies to convert the distributional mean-
ings of words to sentence level: (i) simply sum-
ming up the distributional vector of each word w
in the sentence, (ii) using the information content
ic(w) to weigh the LSA vector of each word w and
summing them up. Then we used cosine similarity
to measure the similarity of two sentences.

3.3 Learning Algorithms
We explored several classification algorithms to
classify entailment relationships and regression
algorithms to predict similarity scores using the
above 72 features after performing max-min stan-
dardization procedure by scaling them to [-1,1].
Five supervised learning methods were explored:
Support Vector Machine (SVM) which makes the
decisions according to the hyperplanes, Random
Forest (RF) which constructs a multitude of de-
cision trees at training time and selects the mode
of the classes output by individual trees, Gradient
Boosting (GB) that produces a prediction model
in the form of an ensemble of weak prediction
models, k-nearest neighbors (kNN) that decides
the class labels with the aid of the classes of k
nearest neighbors, and Stochastic Gradient De-
scent (SGD) which uses SGD technique to min-
imize loss functions. These supervised learning
methods are implemented in scikit-learn toolkit
(Pedregosa et al., 2011). Besides, we also used
a semi-supervised learning strategy for both tasks
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in order to make full use of unlabeled test data.
Specifically, the co-training algorithm was used to
address TE task according to (Zhao et al., 2014).
Its strategy is to train two classifiers with two data
views and to add the top confident predicted in-
stances by one classifier to expand the training set
of another classifier and then to re-train the two
classifiers on the expanded training sets. For STS
task, we utilized CoReg algorithm (Zhou and Li,
2005) which uses two kNN regressors to perform
co-training paradigm.

3.4 Evaluation Measures
In order to evaluate the performance of differ-
ent algorithms, we adopted the official evaluation
measures, i.e., Pearson correlation coefficient for
STS task and accuracy for TE task.

4 Experiments on Training Data

To make a reasonable comparison between differ-
ent algorithms, we performed 5-fold cross valida-
tion on training data with 5000 sentence pairs. The
parameters tuned in different algorithms are listed
below: the trade-off parameter c in SVM, the num-
ber of trees n in RF, the number of boosting stages
n in GB, the number of nearest neighbors k in kNN
and the number of passes over the training data n
in SGD. The rest parameters are set to be default.

Algorithm STS task TE task
Pearson para. Accuracy para.

SVM .807±.058 c=10 83.46±2.09 c=100
RF .805±.052 n=40 83.16±2.64 n=30
GB .806±.055 n=210 83.22±2.48 n=140

kNN .797±.062 k=25 82.54±2.45 k=17
SGD .765±.064 n=29 78.88±1.99 n=15

Table 2: The 5-fold cross validation results on
training data with mean and standard deviation for
each algorithm.

Table 2 reports the experimental results of 5-
fold cross validation with mean and standard devi-
ation and the optimal parameters on training data.
The results of semi-supervised learning methods
are not listed because only a few parameters are
tried due to the limit of time. From this table we
see that SVM, RF and GB perform comparable re-
sults to each other.

5 Results on Test Data

5.1 Submitted System Configurations
According to the above preliminary experimental
results, we configured five final systems for each

task. Table 3 presents the classification and regres-
sion algorithms with their parameters used in the
five systems for each task.

System STS task TE task
1 SVR, c=10 SVC, c=100
2 GB, n=210 GB, n=140
3 RF, n=40 RF, n=30
4 CoReg, k=13 co-training, k=40
5 majority voting majority voting

Table 3: Five system configurations for test data
for two tasks.

Among them, System 1 acts as our primary
and baseline system that employs SVM algorithm
and as comparison System 2 and System 3 exploit
GB and RF algorithm respectively. Unlike super-
vised settings in the aforementioned systems, Sys-
tem 4 employs a semi-supervised learning strategy
to make use of unlabeled test data. For CoReg,
the number of iteration and the number of near-
est neighbors are set as 100 and 13 respectively,
and for each iteration in co-training, the number
of confident predictions is set as 40. To further
improve performance, System 5 combines the re-
sults of 5 different algorithms (i.e. MaxEnt, SVM,
kNN, GB, RF) through majority voting. We used
the averaged values of the outputs from different
regressors as final similarity scores for semantic
similarity measurement task and chose the major
class label for entailment judgement task.

5.2 Results and Discussion

Table 4 lists the final results officially released by
the organizers in terms of Pearson and accuracy.
The best performance among these five systems is
shown in bold font. All participants can submit a
maximum of five runs for each task and only one
primary system is involved in official ranking. The
lower part of Table 4 presents the top 3 results and
the results with ∗ are achieved by our systems.

System STS task TE task(%)
1 0.8279 83.641
2 0.8389 84.128
3 0.8414 83.945
4 0.8210 81.165
5 0.8349 83.986

rank 1st 0.8279* 84.575
rank 2nd 0.8272 83.641*
rank 3rd 0.8268 83.053

Table 4: The results of our five systems for two
tasks and the officially top-ranked systems.

From this table, we found that (1) System 3 (us-
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ing GB algorithm) and System 2 (using RF algo-
rithm) achieve the best performance among three
supervised systems in STS and TE task respec-
tively. However, there is no significant difference
among these systems. (2) Surprisingly, the semi-
supervised system (i.e., System 4) that employs
the co-training strategy to make use of test data
performs the worst, which is beyond our expecta-
tion. Based on our further observation in TE task,
the possible reason is that a lot of misclassified ex-
amples are added into the training pool in the ini-
tial iteration, which results in worse models built
in the subsequent iterations. And we speculate that
the weak learner kNN employed in CoReg may
lead to poor performance as well. (3) The major-
ity voting strategy fails to boost the performance
since GB and RF algorithm obtain the best perfor-
mance among these algorithms. (4) Our systems
obtain very good results on both STS and TE task,
i.e., we rank 1st out of 17 participants in STS task
and rank 2nd out of 18 participants in TE task ac-
cording to the results of primary systems and as
shown in Table 4 our primary system (i.e., System
1) do not achieve the best performance.

In a nutshell, our systems rank first and second
in STS and TE task respectively. Therefore the
answer to the first question raised in Section 1 is
yes. For two tasks, i.e., STS and TE, which are
very closely related but slightly different, we can
use the same features to solve them together.

5.3 Feature Combination Experiments

To answer the second question and explore the in-
fluences of different feature types, we performed
a series of experiments under the best system set-
ting. Table 5 shows the results of different feature
combinations where for each time we selected and
added one best feature type. From this table, we
find that for STS the most effective feature is cps
and for TE task is td. Almost all feature types have
positive effects on performance. Specifically, td
alone achieves 81.063% in TE task which is quite
close to the best performance (84.128%) and cps
alone achieves 0.7544 in STS task. Moreover, the
td feature proposed for TE task is quite effective
in STS task as well, which suggests that text se-
mantic difference measures are also crucial when
measuring sentence similarity.

Therefore the answer to the second question is
yes. It is clear that the features proposed for TE are
also effective for STS and heterogenous features

yield better performance than a single feature type.

len st ss gr td str cps result
+ 0.7544 (STS)

+ + 0.8057(+5.13)
+ + + 0.8280(+2.23)
+ + + + 0.8365(+0.85)

+ + + + + 0.8426(+0.61)
+ + + + + + 0.8432(+0.06)

+ + + + + + + 0.8429(-0.03)
+ 81.063 (TE)

+ + 82.484(+1.421)
+ + + 82.992(+0.508)
+ + + + 83.844(+0.852)
+ + + + + 83.925(+0.081)
+ + + + + + 84.067(+0.142)

+ + + + + + + 84.128(+0.061)

Table 5: Results of feature combinations, the num-
bers in the brackets are the performance incre-
ments compared with the previous results.

6 Conclusion

We set up five state-of-the-art systems and each
system employs different classifiers or regressors
using the same feature set. Our submitted systems
rank the 1st out of 17 teams in STS task with the
best performance of 0.8414 in terms of Pearson
coefficient and rank the 2nd out of 18 teams in
TE task with 84.128% in terms of accuracy. This
result indicates that (1) we can use the same fea-
ture set to solve these two tasks together, (2) the
features proposed for TE task are also effective
for STS task and (3) heterogenous features out-
perform a single feature. For future work, we may
explore the underlying relationships between these
two tasks to boost their performance by each other.
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