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Abstract

In this paper, we describe our unsupervised
method submitted to the Cross-Level Se-
mantic Similarity task in Semeval 2014 that
computes semantic similarity between two
different sized text fragments. Our method
models each text fragment by using the co-
occurrence statistics of either occurred words
or their substitutes. The co-occurrence mod-
eling step provides dense, low-dimensional
embedding for each fragment which allows
us to calculate semantic similarity using
various similarity metrics. Although our
current model avoids the syntactic infor-
mation, we achieved promising results and
outperformed all baselines.

1 Introduction

Semantic similarity is a measure that specifies the
similarity of one text’s meaning to another’s. Se-
mantic similarity plays an important role in vari-
ous Natural Language Processing (NLP) tasks such
as textual entailment (Berant et al., 2012), summa-
rization (Lin and Hovy, 2003), question answering
(Surdeanu et al., 2011), text classification (Sebas-
tiani, 2002), word sense disambiguation (Schütze,
1998) and information retrieval (Park et al., 2005).

There are three main approaches to computing
the semantic similarity between two text fragments.
The first approach uses Vector Space Models (see
Turney & Pantel (2010) for an overview) where
each text is represented as a bag-of-word model.
The similarity between two text fragments can then
be computed with various metrics such as cosine
similarity. Sparseness in the input nature is the
key problem for these models. Therefore, later
works such as Latent Semantic Indexing (?) and
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Topic Models (Blei et al., 2003) overcome spar-
sity problems via reducing the dimensionality of
the model by introducing latent variables. The sec-
ond approach blends various lexical and syntactic
features and attacks the problem through machine
learning models. The third approach is based on
word-to-word similarity alignment (Pilehvar et al.,
2013; Islam and Inkpen, 2008).

The Cross-Level Semantic Similarity (CLSS) task
in SemEval 20141 (Jurgens et al., 2014) provides
an evaluation framework to assess similarity meth-
ods for texts in different volumes (i.e., lexical lev-
els). Unlike previous SemEval and *SEM tasks
that were interested in comparing texts with simi-
lar volume, this task consists of four subtasks (para-
graph2sentence, sentence2phrase, phrase2word and
word2sense) that investigate the performance of
systems based on pairs of texts of different sizes.
A system should report the similarity score of a
given pair, ranging from 4 (two items have very
similar meanings and the most important ideas,
concepts, or actions in the larger text are repre-
sented in the smaller text) to 0 (two items do not
mean the same thing and are not on the same topic).

In this paper, we describe our two unsupervised
systems that are based on co-occurrence statistics
of words. The only difference between the sys-
tems is the input they use. The first system uses the
words directly (after lemmatization, stop-word re-
moval and excluding the non-alphanumeric char-
acters) in text while the second system utilizes the
most likely substitutes consulted by a 4-gram lan-
guage model for each observed word position (i.e.,
context). Note that we participated two subtasks
which are paragraph2sentence and sentence2phrase.

The remainder of the paper proceeds as follows.
Section 2 explains the preprocessing part, the dif-
ference between the systems, co-occurrence mod-
eling, and how we calculate the similarity between

1http://alt.qcri.org/semeval2014/
task3/
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Type-ID Lemma
Sent-33 choose
Sent-33 buy
Sent-33 gift
Sent-33 card
Sent-33 hard
Sent-33 decision

Table 1: Instance id-word pairs for a given sen-
tence.

two texts after co-occurrence modeling has been
done. Section 3 discusses the results of our sys-
tems and compares them to other participants’. Sec-
tion 4 discusses the findings and concludes with
plans for future work.

2 Algorithm

This section explains preprocessing steps of the
data and the details of our two systems2. Both
systems rely on the co-occurrence statistics. The
slight difference between the two is that the first
one uses the words that occur in the given text
fragment (e.g., paragraph, sentence), whereas the
latter employs co-occurrence statistics on 100 sub-
stitute samples for each word within the given text
fragment.

2.1 Data Preprocessing
Two AI-KU systems can be distinguished by their
inputs. One uses the raw input words, whereas the
other uses words’ likely substitutes according to a
language model.

AI-KU1: This system uses the words that were
in the text. All words are transformed into lower-
case equivalents. Lemmatization3 and stop-word
removal were performed, and non-alphanumeric
characters were excluded. Table 1 displays the
pairs for the following sentence which is an in-
stance from paragraph2sentence test set:

“Choosing what to buy with a $35 gift
card is a hard decision.”

Note that the input that we used to model co-
occurrence statistics consists of all such pairs for
each fragment in a given subtask.

2The code to replicate our work can be found
at https://github.com/osmanbaskaya/
semeval14-task3.

3Lemmatization is carried out with Stanford CoreNLP
and transforms a word into its canonical or base form.

AI-KU2: Previously, the utilization of high prob-
ability substitutes and their co-occurrence statis-
tics achieved notable performance on Word Sense
Induction (WSI) (Baskaya et al., 2013) and Part-
of-Speech Induction (Yatbaz et al., 2012) prob-
lems. AI-KU2 represents each context of a word
by finding the most likely 100 substitutes suggested
by the 4-gram language model we built from ukWaC4

(Ferraresi et al., 2008), a 2-billion word web-gathered
corpus. Since S-CODE algorithm works with dis-
crete input, for each context we sample 100 substi-
tute words with replacement using their probabili-
ties. Table 2 illustrates the context and substitutes
of each context using a bigram language model.
No lemmatization, stop-word removal and lower-
case transformation were performed.

2.2 Co-Occurrence Modeling
This subsection will explain the unsupervised method
we employed to model co-occurrence statistics: the
Co-occurrence data Embedding (CODE) method
(Globerson et al., 2007) and its spherical exten-
sion (S-CODE) proposed by Maron et al. (2010).
Unlike in our WSI work, where we ended up with
an embedding for each word in the co-occurrence
modeling step in this task, we model each text unit
such as a paragraph, a sentence or a phrase, to ob-
tain embeddings for each instance.

Input data for S-CODE algorithm consist of instance-
id and each word in the text unit for the first sys-
tem (Table 1 illustrates the pairs for only one text
fragment) instance-ids and 100 substitute samples
of each word in text for the second system. In
the initial step, S-CODE puts all instance-ids and
words (or substitutes, depending on the system)
randomly on an n-dimensional sphere. If two dif-
ferent instances have the same word or substitute,
then these two instances attract one another — oth-
erwise they repel each other. When S-CODE con-
verges, instances that have similar words or sub-
stitutes will be closely located or else, they will be
distant from each other.

AI-KU1: According to the training set perfor-
mances for various n (i.e., number of dimensions
for S-CODE algorithm), we picked 100 for both
tasks.

AI-KU2: We picked n to be 200 and 100 for
paragraph2sentence and sentence2phrase subtasks,
respectively.

4Available here: http://wacky.sslmit.unibo.it
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Word Context Substitutes
the <s> dog The (0.12), A (0.11), If (0.02), As (0.07), Stray (0.001),..., wn (0.02)

dog the cat (0.007), dog (0.005), animal (0.002), wolve (0.001), ..., wn (0.01)
bites dog . runs (0.14), bites (0.13), catches (0.04), barks (0.001), ..., wn (0.01)

Table 2: Contexts and substitute distributions when a bigram language model is used. w and n denote an
arbitrary word in the vocabulary and the vocabulary size, respectively.

System Pearson Spearman

Pa
ra

gr
ap

h-
2-

Se
nt

en
ce AI-KU1 0.671 0.676

AI-KU2 0.542 0.531
LCS 0.499 0.602
lch 0.584 0.596
lin 0.568 0.562
JI 0.613 0.644

Table 3: Paragraph-2-Sentence subtask scores for
the training data. Subscripts in AI-KU systems
specify the run number.

Since this step is unsupervised, we tried to en-
rich the data with ukWaC, however, enrichment
with ukWaC did not work well on the training data.
To this end, proposed scores were obtained using
only the training and the test data provided by or-
ganizers.

2.3 Similarity Calculation
When the S-CODE converges, there is an n-dimen-
sional embedding for each textual level (e.g., para-
graph, sentence, phrase) instance. We can use a
similarity metric to calculate the similarity between
these embeddings. For this task, systems should
report only the similarity between two specific cross
level instances. Note that we used cosine simi-
larity to calculate similarity between two textual
units. This similarity is the eventual similarity for
two instances; no further processing (e.g., scaling)
has been done.

In this task, two correlation metrics were used
to evaluate the systems: Pearson correlation and
Spearman’s rank correlation. Pearson correlation
tests the degree of similarity between the system’s
similarity ratings and the gold standard ratings. Spear-
man’s rank correlation measures the degree of sim-
ilarity between two rankings; similarity ratings pro-
vided by a system and the gold standard ratings.

System Pearson Spearman

Se
nt

en
ce

-2
-P

hr
as

e AI-KU1 0.607 0.568
AI-KU2 0.620 0.579

LCS 0.500 0.582
lch 0.484 0.491
lin 0.492 0.470
JI 0.465 0.465

Table 4: Sentence2phrase subtask scores for the
training data.

3 Evaluation Results

Tables 3 and 4 show the scores for Paragraph-2-
Sentence and Sentence-2-Phrase subtasks on the
training data, respectively. These tables contain
the best individual scores for the performance met-
rics, Normalized Longest Common Substring (LCS)
baseline, which was given by task organizers, and
three additional baselines: lin (Lin, 1998), lch (Lea-
cock and Chodorow, 1998), and the Jaccard In-
dex (JI) baseline. lin uses the information content
(Resnik, 1995) of the least common subsumer of
concepts A and B. Information content (IC) indi-
cates the specificity of a concept; the least com-
mon subsumer of a concept A and B is the most
specific concept from which A and B are inherited.
lin similarity5 returns the difference between two
times of the IC of the least common subsumer of
A and B, and the sum of IC of both concepts. On
the other hand, lch is a score denoting how similar
two concepts are, calculated by using the shortest
path that connects the concept and the maximum
depth of the taxonomy in which the concepts oc-
cur6 (please see Pedersen et al. (2004) for further
details of these measures). These two baselines
were calculated as follows. First, using the Stan-

5lin similarity = 2 ∗ IC(lcs)/(IC(A) + IC(B)) where
lcs indicates the least common subsumer of concepts A and
B.

6The exact formulation is −log(L/2d) where L is the
shortest path length and d is the taxonomy depth.
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System Pearson Spearman
Pa

ra
gr

ap
h-

2-
Se

nt
en

ce
Best 0.837 0.821

2nd Best 0.834 0.820
3rd Best 0.826 0.817
AI-KU1 0.732 0.727
AI-KU2 0.698 0.700

LCS 0.527 0.613
lch 0.629 0.627
lin 0.612 0.601
JI 0.640 0.687

Table 5: Paragraph-2-Sentence subtask scores for
the test data. Best indicates the best correlation
score for the subtask. LCS stands for Normalized
Longest Common Substring. Subscripts in AI-KU
systems specify the run number.

ford Part-of-Speech Tagger (Toutanova and Man-
ning, 2000) we tagged words across all textual lev-
els. After tagging, we found the synsets of each
word matched with its part-of-speech using Word-
Net 3.0 (Miller and Fellbaum, 1998). For each
synset of a word in the shorter textual unit (e.g.,
sentence is shorter than paragraph), we calculated
the lin/lch measure of each synset of all words
in the longer textual unit and picked the highest
score. When we found the scores for all words,
we calculated the mean to find out the similarity
between one pair in the test set. Finally, Jaccard
Index baseline was used to simply calculate the
number of words in common (intersection) with
two cross textual levels, normalized by the total
number of words (union). Table 5 and 6 demon-
strate the AI-KU runs on the test data. Next, we
present our results pertaining to the test data.

Paragraph2Sentence: Both systems outperformed
all the baselines for both metrics. The best score
for this subtask was .837 and our systems achieved
.732 and .698 on Pearson and did similar on Spear-
man metric. These scores are promising since our
current unsupervised systems are based on bag-of-
words approach — they do not utilize any syntac-
tic information.

Sentence2Phrase: In this subtask, AI-KU sys-
tems outperformed all baselines with the excep-
tion of the AI-KU2 system which performed slightly
worse than LCS on Spearman metric. Performances
of systems and baselines were lower than Para-

System Pearson Spearman

Se
nt

en
ce

-2
-P

hr
as

e

Best 0.777 0.642
2nd Best 0.771 0.760
3rd Best 0.760 0.757
AI-KU1 0.680 0.646
AI-KU2 0.617 0.612

LCS 0.562 0.626
lch 0.526 0.544
lin 0.501 0.498
JI 0.540 0.555

Table 6: Sentence2phrase subtask scores for the
test data.

graph2Sentence subtask, since smaller textual units
(such as phrases) make the problem more difficult.

4 Conclusion

In this work, we introduced two unsupervised sys-
tems that utilize co-occurrence statistics and rep-
resent textual units as dense, low dimensional em-
beddings. Although current systems are based on
bag-of-word approach and discard the syntactic in-
formation, they achieved promising results in both
paragraph2sentence and sentence2phrase subtasks.
For future work, we will extend our algorithm by
adding syntactic information (e.g, dependency pars-
ing output) into the co-occurrence modeling step.
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